Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TPPL Phong Lưu
Xem chi tiết
Không Tên
Xem chi tiết
missing you =
12 tháng 8 2021 lúc 20:00

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 20:00

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 12 2017 lúc 5:56

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON

Jeon JungKook
Xem chi tiết
Thanh Hoàng Thanh
6 tháng 2 2021 lúc 13:35

Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD

Xét tam giác ABC có: OM // AB (MN // AB)

 =>  \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)

Xét tam giác ABD có: ON // AB (MN // AB)

=>   \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)

Xét hình thang ABCD có: MN // AB // CD (cmt)

 => \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)

Từ (1) (2) (3) => OM = ON

nguyễn thị thanh
6 tháng 2 2021 lúc 13:52

undefined

Trần Mạnh
6 tháng 2 2021 lúc 13:38

Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\)  ( hệ quả Ta lét)    (1)

Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\)  ( hệ quả Ta lét)     (2)

Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\)  ( hệ quả Ta lét)     (3)

từ (1),  (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)

 

 

Đại Ma Vương
Xem chi tiết
Bùi Tiến Mạnh
5 tháng 8 2016 lúc 15:16

a) Ta có: góc Q =góc P 

        => AQ = AP ( quan hệ giữa góc và cạnh đối diện)

     Ta có: AM + MQ = AQ

               AN + NP  = AP

       Mà MQ = NP ( MNPQ là hình thang cân).

            AQ = AP (cmt)

       => AM = AN => tam giác MAN cân tại A.

Câu b bạn tự làm nha     

tranthang ly
Xem chi tiết
Hoàng Long Nguyễn
Xem chi tiết
MinhAnh NT
Xem chi tiết
Tom Sano
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 22:58

a: Xét ΔOMN và ΔOPQ có 

\(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{MON}=\widehat{POQ}\)

Do đó; ΔOMN\(\sim\)ΔOPQ

Suy ra: OM/OP=ON/OQ

hay \(OM\cdot OQ=ON\cdot OP\)

b: Xét ΔMQP có AO//QP

nên AO/PQ=MA/MQ(1)

Xét ΔNQP có OB//QP

nên OB/PQ=NB/NP(2)

Xét hình thang MNPQ có AB//QP

nên MA/MQ=NB/NP(3)

Từ (1), (2) và (3) suy ra OA=OB