Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kronus
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 21:13

a: Xét ΔHEF và ΔKFE có 

HF=KE

\(\widehat{HFE}=\widehat{KEF}\)

EF chung

Do đó: ΔHEF=ΔKFE
Suy ra: \(\widehat{HEF}=\widehat{KFE}\)

=>\(\widehat{IEF}=\widehat{IFE}\)

=>ΔIEF cân tại I

c: Ta có: DE=DF

nên D nằm trên đường trung trực của FE(1)

Ta có: IE=IF

nên I nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra DI là đường trung trực của FE

hay DI vuông góc với EF tại trung điểm của FE

Nguyễn Vân Anh
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 9 2021 lúc 17:26

\(a,\widehat{DHF}=90^0\)(góc nt chắn nửa đg tròn) nên \(DH\perp EF\)

\(b,\left\{{}\begin{matrix}OK\perp HF\\DH\perp HF\end{matrix}\right.\Rightarrow OK//DH;FO=OD\Rightarrow FK=HK\\ \left\{{}\begin{matrix}FO=OD\\FK=HK\end{matrix}\right.\Rightarrow OK.là.đtb.\Delta DFH\)

Lại có \(FD=2FO=10\left(cm\right);DH=\sqrt{FD^2-FH^2}=6\left(cm\right)\left(pytago\right)\)

\(\Rightarrow OK=\dfrac{1}{2}DH=3\left(cm\right)\)

\(c,\) Áp dụng HTL tam giác

\(\Rightarrow DH^2=HE\cdot HF\)

Mà \(2OK=DH\Rightarrow\left(2OK\right)^2=HE\cdot HF\Rightarrow4OK^2=HE\cdot HF\)

 

Meh Paylak
Xem chi tiết
Lan Ngọc
Xem chi tiết
乇尺尺のレ
31 tháng 7 2023 lúc 20:01

Áp dụng hệ thức lượng, ta có:

\(DH^2=FH.EH\\ DH^2=\left(25-EH\right)EH\\ 12^2=\left(25-EH\right)EH\\ \Rightarrow EH=16\left(cm\right)\\ \Rightarrow HF=25-16=9\left(cm\right)\)

\(DF^2=EF.FH\\ \Leftrightarrow DF^2=25.9\\ \Rightarrow DF=\sqrt{225}=15\left(cm\right)\)

Áp dụng định lí py-ta-go, ta có:

\(DE^2=DH^2+HF^2\\ \Leftrightarrow DE^2=12^2+16^2\\ \Rightarrow DE=\sqrt{400}=20\left(cm\right)\)

nhung phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 18:55

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó:ΔDHE=ΔDHF

b: EF=8cm nên HE=4cm

=>DH=3cm

c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó:ΔDMH=ΔDNH

Suy ra: HM=HN

Nguyễn Tân Vương
7 tháng 3 2022 lúc 19:33

undefined

\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)

\(\Rightarrow DE=DF\)

\(\widehat{E}=\widehat{F}\)

\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)

\(DE=DF\left(cmt\right)\)

\(BH\text{ chung}\)

\(\widehat{E}=\widehat{F}\left(cmt\right)\)

\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)

\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)

\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)

\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(\text{Xét }\Delta DEH\text{ có:}\)

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)

\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)

\(DH\text{ chung}\)

\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^0\)

\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)

\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)
 

Tang Ha Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 20:13

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

Tamne
Xem chi tiết
Akai Haruma
18 tháng 3 2021 lúc 1:35

Lời giải:

Xét tam giác $DEH$ và $DFH$ có:

$DE=DF$ có $DEF$ cân tại $D$

$DH$ chung

$\widehat{DHE}=\widehat{DHF}=90^0$

$\Rightarrow \triangle DEH=\triangle DFH$ (ch-cgv)

$\Rightarrow EH=FH$

Xét tam giác $MHE$ và $MHF$ có:

$\widehat{MHE}=\widehat{MHF}=90^0$

$MH$ chung

$EH=FH$ (cmt)

$\Rightarrow \triangle MHE=\triangle MHF$ (c.g.c)

$\Rightarrow ME=MF$

 

Akai Haruma
18 tháng 3 2021 lúc 1:38

Hình vẽ:

undefined

đỗ ngọc trâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 3 2021 lúc 20:20

a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có 

DE=DF(ΔDEF cân tại D)

DH chung

Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)

Suy ra: HE=HF(hai cạnh tương ứng)

Nguyễn Thị Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
10 tháng 5 2022 lúc 21:23

Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF 

^DFE _ chung 

^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 21:24

a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có 

góc F chung

Do đó: ΔEDF\(\sim\)ΔDHF

BFF_HAI1
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
26 tháng 3 2023 lúc 19:50

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...