Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Minh Quang
Xem chi tiết
nguyễn trướng phi
Xem chi tiết
nguyễn trướng phi
3 tháng 12 2016 lúc 21:54

các bạn giúp mình nhé sáng thứ tư mình nộp bài rồi cảm ơn

 

Ariels spring fashion
Xem chi tiết
Đạt Lê
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2018 lúc 4:33

Đáp án A

Vì tam giác ABC cân tại A nên AB = AC

Suy ra: hai dây AB và AC cách đều tâm.

Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.

LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 20:32

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{BC}{2}\cdot h\)

Bán kính là:

\(R=\dfrac{a\cdot b\cdot c}{4\cdot S}=\dfrac{b\cdot b\cdot BC}{4\cdot\dfrac{BC\cdot h}{2}}=\dfrac{b\cdot b\cdot BC}{2\cdot BC\cdot h}=\dfrac{b^2}{2h}\)

Phía sau một cô gái
22 tháng 8 2021 lúc 20:34

Ta có: O là trọng tâm của ABC AO là đường trung tuyến của ABC AO là đường cao của ABC (  Trong tam giác cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực )

⇒ HB = HC = \(\dfrac{BC}{2}\)

⇒ OH = \(\dfrac{AH}{3}=\dfrac{h}{3}\) ( trong tam giác 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tam giác và cách đáy 1 khoảng = \(\dfrac{1}{3}\) chiều dài mỗi đường )

Xét tam giác vuông ABH có

\(BH^2=AB^2+AH^2=b^2+h^2\)

Xét tam giác vuông OBH có

BO = R = \(\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\dfrac{h^2}{9}}=\dfrac{1}{3}\sqrt{9b^2-8h^2}\)

Nguyễn Duy Khang
Xem chi tiết
Minh Hiếu
5 tháng 2 2022 lúc 10:00

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Minh Hiếu
5 tháng 2 2022 lúc 19:39

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)

\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Nguyễn Quỳnh Chi
25 tháng 7 2022 lúc 20:56

Có câu trả lời là được mà

 

LuKenz
Xem chi tiết
Éclore Quelle
Xem chi tiết
Kiều Vũ Linh
23 tháng 11 2023 lúc 7:27

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)

Đào Kiều Ngọc Ánh
Xem chi tiết