Bμi 1: Cho tam gi ác ABC vuông tại A, đường cao AH. M là trung điểm BC. Cho
AH = 12cm ; AM = 13cm. Tính HB, HC
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho tam giác ABC có đường cao BD và CE cắt nhau tại H. Đường vuông góc với Ab tại B và đường vuông góc với Ác tại C cắt nhau ở K. a, Tứ giác BHCK là hình gì? b, Gọi M là trung điểm của BC , I là trung điểm của AK.Chứng mình : IM=1/2 AH
Cho tam giác ABC vuông tại A (AB<AC)đường cao AH (H thuộc BC)
a)Cho AB = 9cm, AC = 12cm. Tính AH,BH,tạc
b)Từ H kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Chứng minh HD.AB+HE.AC=AB.AC
c)Gọi M là trung điểm BC, AM cắt DE tại I. Chứng minh 1/AI²=1/AD²+1/AE²
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
Cho tam giác ABC vuông tại A đg cao AH M là trung điểm của BC cho AH=12cm,AM=13cm.Tính HB,HC.Giúp mik với mình cần gấp lắm!!!
b xem trong này có nhé https://cunghocvui.com/danh-muc/toan-lop-7
Cho tam giác ABC vuông tại A, AH là đường cao. AB=15cm, AH=12cm. a) Chứng minh tam giác HBA đồng dạng tam giác ABC b) Tính BH, BC và Diện tích tam giác AHC c) Gọi D,E,F lần lượt là trung điểm của AB,AH,BC. FD cắt CE tại K. Chứng minh KB song song AH
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BC=\dfrac{AB^2}{BH}=\dfrac{15^2}{9}=25\left(cm\right)\)
Vậy: BH=9cm; BC=25cm
Cho tam giác ABC vuông tại A, AB = 5cm, AC = 12cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi AM là đường trung tuyến của tam giác ABC, tính diện tích tam giác AHM
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
BT2: Cho tam giác ABC cân tại A, đường cao AH. Gọi M, N lần lượt là trung điểm hai cạnh AB, AC. Biết AH = 16cm, BC = 12cm
a/ Tính diện tích tam giác ABC và độ dài đoạn thẳng MN
ÔN TẬP HỌC KỲ 1 (PHẦN HÌNH HỌC)
BT2: Cho tam giác ABC cân tại A, đường cao AH. Gọi M, N lần lượt là trung điểm hai cạnh AB, AC. Biết AH = 16cm, BC = 12cm
b/ Gọi E là điểm đối xứng của H qua M.
Chứng minh tứ giác AHBE là hình chữ nhật
ÔN TẬP HỌC KỲ 1 (PHẦN HÌNH HỌC)
BT2: Cho tam giác ABC cân tại A, đường cao AH. Gọi M, N lần lượt là trung điểm hai cạnh AB, AC. Biết AH = 16cm, BC = 12cm
c/ Gọi F là điểm đối xứng của A qua H.
Chứng minh tứ giác ABFC là hình thoi
ÔN TẬP HỌC KỲ 1 (PHẦN HÌNH HỌC)
BT2: Cho tam giác ABC cân tại A, đường cao AH. Gọi M, N lần lượt là trung điểm hai cạnh AB, AC. Biết AH = 16cm, BC = 12cm
d/ Gọi K là hình chiếu của H lên FC,
gọi I là trung điểm của HK.
Chứng minh BK vuông góc IF
Cho Tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh Tam giác HBA ~ tam giác ABC b) Chứng minh: AB^ = BH.BCTính AB, AH, biết BH = 3cm BC = 12cm c) Gọi E là trung điểm của AB, kẻ HD vuông góc với AC tại D (D thuộc AC). Đường thẳng CE cắt AH và HD lần lượt tại I, K. Chúng minh KH = KD và 3 điểm B, I, D thẳng hàng.
a: Xet ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A có AH vuông góc BC
nên BA^2=BH*BC
\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE
Xét ΔCEB có KH//EB
nên KH/EB=CK/CE=KD/AE
mà AE=EB
nên KH=KD