Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thịnh Phát

Cho tam giác ABC vuông tại A, AH là đường cao. AB=15cm, AH=12cm. a) Chứng minh tam giác HBA đồng dạng tam giác ABC b) Tính BH, BC và Diện tích tam giác AHC c) Gọi D,E,F lần lượt là trung điểm của AB,AH,BC. FD cắt CE tại K. Chứng minh KB song song AH

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 11:28

hình bạn tự vẽ 

a) Xét ΔHBA và ΔABC có :

^H = ^A = 900

^B chung

=> ΔHBA ~ ΔABC (g.g)

b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm

Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC

=> BC = AB2/HB = 152/9 = 25cm

Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm

=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2

c) mình chưa nghĩ ra :v 

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:26

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

Nguyễn Lê Phước Thịnh
12 tháng 4 2021 lúc 13:28

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{AB^2}{BH}=\dfrac{15^2}{9}=25\left(cm\right)\)

Vậy: BH=9cm; BC=25cm


Các câu hỏi tương tự
Nguyễn Thị Hồng Thúy
Xem chi tiết
Khaiminhhoang
Xem chi tiết
Nguyễn Phạm Thanh Ngân
Xem chi tiết
HOANG QUOC CHUNG
Xem chi tiết
Như Quỳnh
Xem chi tiết
Phan thị cẩm nhung
Xem chi tiết
quý lê
Xem chi tiết
cần lời giải
Xem chi tiết
IU
Xem chi tiết