Cho △ABC có AB=5cm; AC=8cm. Tia phân giác của góc A cắt BC tại D, tỉ số diện tích △ABD và △ACD là k. Tính giá trị của k
.Cho ABC có AB = 4cm, AC = 5cm, BC = 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD = 5cm. a) Chứng minh: ABC đồng dạng với CBD. b) Tính CD
a) Ta có: BD=AB+AD(A nằm giữa B và D)
nên BC=4+5=9(cm)
Xét ΔABC và ΔCBD có
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}\left(\dfrac{4}{6}=\dfrac{6}{9}\right)\)
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔCBD(c-g-c)
b) Ta có: ΔABC∼ΔCBD(cmt)
nên \(\dfrac{AC}{CD}=\dfrac{BC}{BD}\)
\(\Leftrightarrow\dfrac{5}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)
hay CD=7,5(cm)
Vậy: CD=7,5cm
a)Ta có : $BD = AB + AD = 4 + 5 = 9(cm)$
Xét tam giác ABC và tam giác CBD ta có :
Góc B chung
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}\left(\dfrac{4}{6}=\dfrac{6}{9}\right)\)
Suy ra tam giác ABC đồng dạng với tam giác CBD
b)
Theo câu a), ta có :
\(\dfrac{BC}{BD}=\dfrac{AC}{CD}\Leftrightarrow CD=\dfrac{9.5}{6}=7,5\left(cm\right)\)
Cho tam giác ABC có A = 90 độ ; AB = 3cm ; BC = 5cm . Diện tích của tam giác ABC bằng : a) 6cm ² b) 5cm ² c) 4cm ²
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
Cho tam giác ABC có AB= 4cm, AC= 5cm, AC= 5cm, BC= 6cm.Trên tia đối của tia AB lấy điểm I sao cho AI =AC
a, Chứng minh: Tam giác ABC~CBI
b, Chứng minh:AI.CI=AC.BC
bạn tự vẽ hình
a)ta có AB/CB=2/3;BC/BI=BC/AB+AI=2/3
Xét tam giác ABC và tam giác CBI:
AB/CB=BC/BI(=2/3)
góc ABC chung
suy ra:tam giác ABC~tam giác CBI
b)có lẽ sai đề.Xem kĩ lại nhé
Cho tam giác ABC có AB=3cm, BC=5cm, ABC^=120 độ. Tính độ dài AC
Vì \(\widehat{ABC}\) là góc tù nên AC>BC>AB(1)
Xét \(\widehat{ABC}\) có:
BC+AB>AC (bất đẳng thức tam giác)(2)
Từ (1)(2)=> BC<AC<BC+AB
5<AC<8
=> AC=6cm hoặc AC=7cm
Theo định lí cos
\(AC^2=AB^2+BC^2-2cosABC.AB.BC=49\Rightarrow AC=7cm\)
Cho tam giác ABC có độ dài các cạnh A B = 4 c m , A C = 5 c m , B C = 5 c m . Tìm góc lớn nhất của tam giác
A. Góc A
B. Góc B
C. Góc C
D. Góc B và góc A
Vì cạnh AC = BC = 5cm nên ∠B = ∠A và cùng là góc lớn nhất. Chọn D
cho tam giác ABC có AB = AC = 5cm, BC = 5cm đường trung tuyến AM . TRọng tâm G . tính Ag
Cho ΔABC có AB = 4cm , AC = 5cm , BC = 6cm .Trên tia đối của tia AB lấy D sao cho AD=5cm
a)Chứng minh :△ABC∞ΔCBD
b) Tính CD
c)Chứng minh góc BAC = 2. góc ACD
a, \(\Delta ABC\sim\Delta CBD\)
\(\dfrac{AB}{CB}=\dfrac{BC}{BD}=\dfrac{4}{6}=\dfrac{6}{4+5}=\dfrac{2}{3}\)
b, \(\dfrac{AC}{CD}=\dfrac{AB}{CB}=\dfrac{2}{3}\)
\(\Rightarrow CD=\dfrac{3AC}{2}=\dfrac{15}{2}\)
-Chúc bạn học tốt-
Cho ΔABC có AB = 4cm , AC = 5cm , BC = 6cm .Trên tia đối của tia AB lấy D sao cho AD=5cm
a)Chứng minh :△ABC∞ΔCBD
b) Tính CD
c)Chứng minh góc BAC = 2. góc ACD
Cho ∆ABC có AC = 3cm, BC = 5cm, góc BCA = 60°. Tính AB
\(\cos BCA=\dfrac{BC^2+AC^2-AB^2}{2\cdot AC\cdot BC}\)
\(\Leftrightarrow5^2+3^2-AB^2=2\cdot3\cdot5\cdot\dfrac{1}{2}=15\)
hay \(AB=\sqrt{19}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB\(=\) 3cm, BC \(=5cm.\)
Tính diện tích tam giác ABC
Áp dụng định lí Pytago có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
Diện tích tam giác ABC là:
( 3. 5 ): 2 = 7.5 ( cm2)
Đ/s:...