Cho tam giác ABC vuông tại A có AB =6cm ; AC=8cm . Kẻ đường cao AH . a) Chứng minh : tam giác ABC ~ tam giác HBA Gì GT và KL giùm em ạ
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
Cho tam giác ABC vuông tại A có AB=6cm,BC=10,phân giác BD.tính DA,DC
Cho tam giác ABC vuông tại A có AB=6cm,AC=10,phân giác AD.tính BC,DB,DC
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
cho tam giac abc vuông tại a, AB 3cm bc 5 cm so sánh góc b và c
Cho tam giác ABC có AB=6cm, AC=8cm, tia phân giác góc A cắt BC tại D. CMR: góc ADB<góc ADC.
Cho tam giác ABC cân tại A có chu vi = 20cm.Cạnh y của BC=6cm. So sánh các góc của ABC?
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
cho tam giác abc có ab=6cm,ac=8cm,bc=10cm. Kẻ ah vuông góc vs bc tại h 1 chứng minh tam giác abc vuông tại a 2 tính diện tích tam giác abc 3 tính AH
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
Ta có: BC2=102=100
AB2+AC2=62+82=100
Vậy BC2=AB2+AC2
Xét ΔABC có:
BC2=AB2+AC2
Nên ΔABC vuông tại A(Định lí Pytago đảo)
Ta có: ΔABC vuông tại A(gt)
Nên
cho tam giác ABC có AB=8CM ; AC=6CM và BC=10CM . Chứng minh rằng tam giác ABC là tam giác vuông tại A
Ta có:
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
\(BC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)
Áp dụng định lý Pytago đảo ta có:
AB2+AC2=82+62=100
mà 102=100
⇒82+62=102hay AB2+AC2=BC2
vậy ABC là tam giác vuông tại A
áp dụng định lý pitago ta có :
ab^2+ac^2=8^2+6^2=100=10^2
=>bc=10cm
=>tam giác abc vuông tại a
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Cho tam giác ABC vuông góc tại A có AB = 3cm, AC=4cm và tam giác MPQ vuông góc tại M có MP = 6cm, PQ= 10cm. Chứng minh tam giác ABC đồng dạng với tam giác MPQ.
Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:
\(MQ^2=PQ^2-MP^2\)
\(\Rightarrow MQ=10^2-6^2=100-36=64\)
\(\Rightarrow MQ=8\left(cm\right)\)
Xét ▲ABC và ▲MPQ ta có :
\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)
<A=<M=90
Do đó hai tam giác đồng dạng
- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Vẽ đường cao AD của tam giác ABC. a) Chứng minh tam giác ABC vuông tại A và tam giác ABD đồng dạng tam giác CAD. b) Trên AB lấy điểm F sao cho AB = 3AF. Từ điểm D, vẽ đường thẳng vuông góc với FD tại D, đường thẳng này cắt AC tại E. Chứng minh: góc AFD = góc CED. c) Tính tỉ số:
a: Xét ΔABC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
Xét ΔABD vuông tại D và ΔCAD vuông tại D có
góc DBA=góc DAC
=>ΔABD đồng dạng với ΔCAD
b: góc EAF+góc EDF=180 độ
=>AFDE nội tiếp
=>góc AFD+góc AED=180 độ
=>góc AFD=góc CED