Cho tam giác ABC vuông tại B có A=12cm; AC=13cm. Chu vi của tam giác ABC là?
a/ Cho tam giác ABC vuông tại B có AB=12cm,BC=16cm.Tính AC
b/ Cho tam giác DBC vuông tại C có CB=3cm,BD=5cm.Tính CD
Áp dụng định lí Pytago ta có
\(a,BC^2=AB^2+BC^2=12^2+16^2\\ =\sqrt{400}=20\\ b,BD^2=BC^2+CD^2\\ 5^2=3^2+CD^2\\ CD^2=5^2-3^2=\sqrt{16}=4\)
Cho tam giác ABC vuông tại A có BC = 12cm . B = 60 ° . a ) Giải tam giác ABC . b ) Tính đường cao AH của MBC .
\(a,AB=\cos B\cdot BC=6\left(cm\right)\\ AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\\ b,\text{Áp dụng HTL: }AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A có AC= 12cm, BC=15cm. Giải tam giác ABC?
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>AB^2=15^2-12^2=81
=>AB=9cm
Xét ΔABC vuông tại A có sin C=AB/BC=9/15=3/5
nên góc C=37 độ
=>góc B=53 độ
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}\)
\(\Leftrightarrow AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
Xét tam giác ABC vuông tại A ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{C}\approx37^o\)
Mà: \(\widehat{C}+\widehat{B}=90^o\)
\(\Leftrightarrow\widehat{B}=90^o-37^o=53^o\)
Cho tam giác ABC vuông tại A có AC=12cm; BC=15cm
a) Giải tam giác vuông ABC
b) Tính độ dài đường cao AH và đường phân giác AD của tam giác ABC
a, Cho tam giác ABC vuông tại A có AB =3/5 BC . Đường cao AH =12cm . Tính chu vi tam giác ABC .
b, Cho tam giác ABC vuông tại A có đường cao AH , phân giác AD . Biết BD=15cm ,DC=20cm.Tính AH,AD
GIÚP MIK . THANKS
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm
Cho ∆ABC vuông tại A. a) Biết AC = 5cm, AC = 12cm. Giải tam giác vuông ABC. b) Biết AC = 5cm, góc B = 40°. Giải tam giác vuông ABC
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)
nên \(\widehat{B}\simeq23^0\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}\simeq90^0-23^0=67^0\)
b: Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-40^0=50^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=BC^2-AC^2\)
=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)
cho tam giác ABC vuông tại A có AB=5cm AC=12cm . vẽ đường cao AH a. Chứng minh tam giác HBA đồng dạng tam Giác ABC b tính AH,BH
Hình vẽ:
Giải
a. Xét ΔHBA và ΔABC có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ΔHBA ∼ ΔABC (g.g)
b. Xét ΔABC vuông tại A có:
\(BC^2=AB^2+AC^2\)(định lí py-ta-go)
\(=5^2+12^2\)
\(=169\)
\(\rightarrow BC=\sqrt{169}=13\left(cm\right)\)
Vì ΔABC ∼ ΔHBA (cmt)
\(\rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{5}{BH}=\dfrac{12}{AH}=\dfrac{13}{5}\)
⇒\(BH=\dfrac{5.5}{13}=\dfrac{25}{13}\left(cm\right)\)
⇒\(AH=\dfrac{12.5}{13}=\dfrac{60}{13}\left(cm\right)\)
Cho tam giác ABC vuông tại A có BC = 15cm, AB = 12cm. Tính AC, B ^
A. AC = 8 (cm); B ^ ≈ 36 0 52 '
B. AC = 9 (cm); B ^ ≈ 36 0 52 '
C. AC = 9 (cm); B ^ ≈ 37 0 52 '
D. AC = 9 (cm); B ^ ≈ 36 0 55 '
Xét tam giác ABC vuông tại A có:
Đáp án cần chọn là: B