Cho tam giác ABC đều có AD là tia phân giác BÂC (D thuộc BC)
a) Chứng minh: AD vuông góc BC
b) Tính AD biết BC=8cm ; AB=5cm
Cho tam giác abc vuông tại A,AB=9cm,AC=12cm. Gọi BD là tia phân giác của góc ABC (D thuộc AC).Qua D kẻ DE vuông góc BC (E thuộc BC)
a)Tính độ dài BC
b)Chứng minh tam giác ABC=Tam giác EBD
c)Chứng minh AD<DC
d) gọi I là giao điểm của DE và AB.Chứng minh BIC cân
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBI}\) chung
DO đó: ΔBEI=ΔBAC
Suy ra: BI=BC
hay ΔBIC cân tại B
Cho tam giác ABC vuông tại A biết AB=3cm, AC=5cm
a, Tính BC
b, Trên tia đối của tia AB lấy điiemr D sao cho AD=AB. Chứng minh tam giác BCD là tam giác cân
c, Vẽ AH vuông góc với BC, AK vuông góc với DC ( H thuộc BC ) ( K thuộc DC ). Chứng minh tam giác AHC = tam giác AKD
Chứng minh HK song song BD
a: \(BC=\sqrt{34}\left(cm\right)\)
b: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD cân tại C
c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có
CA chung
\(\widehat{KCA}=\widehat{HCA}\)
Do đó: ΔCKA=ΔCHA
Suy ra: CK=CH
d: Xét ΔCBD có CK/CD=CH/CB
nên HK//BD
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Tính BC
b) Chứng minh tam giác ABC đồng dạng với tam giác
c) Chứng minh AB2 = BH.BC. Tính BH, HC
d) Vẽ phân giác AD của góc A (D ∈ BC). Tính DB
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
Cho tam giác ABC vuông tại A, AD là tia phân giác góc A (D thuộc BC) . Biết BC=14cm,BD=8cm . Tính AB, AC?
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Cho tam giác ABC vuông A , có AB=6cm , AC=8cm . Vẽ đường cao AH.
a, Tính BC
b,CM: Tam giác ABC ~ Tam giác AHB
c,CM:\(AB^2=BH\cdot BC\).Tính BH,HC
d,Vẽ phân giác AD của góc A (D thuộc BC) Tính DB
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
2
TAM GIÁC ABC VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K
a, BIẾT AC = 8cm AB=6cm . TÍNH BC
b, TAM GIÁC ABK LÀ TAM GIÁC GÌ
c, CHỨNG MINH DK VUÔNG BC .
d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC CỦA GÓC HAC
3
CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm
a, TAM GIÁC ABC LÀ TAM GIÁC GÌ
b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC
c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC). a) Tính DB/DC. b) Kẻ đường cao AH (H thuộc BC). Chứng minh tam giác AHB đồng dạng tam giác CHA
Cho tam giác ABC , mũ B = 90 độ, AC= 20 cm
AB= 12 cm. Đường phân giác AD (D= BC)
Kẻ BO vuông góc với AD ( O thuộc AD) , BO cắt AC tại E
a. Tính BC
b. Chứng minh: tam giác ABO= tam giác AEO
c. AD là đường trung trực của AE
d. Cho mũ A= 60 độ, định dạng tam giác BAE?
a, Xét Δ ABC vuông tại B, có :
\(AC^2=AB^2+BC^2\)
=> \(20^2=12^2+BC^2\)
=> \(256=BC^2\)
=> BC = 16 (cm)
b, Xét Δ ABO và Δ AEO, có :
\(\widehat{BAO}=\widehat{EAO}\) (AD là đường phân giác \(\widehat{BAE}\))
AO là cạnh chung
\(\widehat{AOB}=\widehat{AOE}=90^o\)
=> Δ ABO = Δ AEO (g.c.g)
c, Ta có : Δ ABO = Δ AEO (cmt)
=> AB = AE
=> Δ ABE cân tại A
Ta có :
Δ ABE cân tại A
AD là phân giác \(\widehat{BAE}\)
=> AD là đường trung trực
=> AD là đường trung trực của AE
d, Ta có : Δ ABE cân tại A
Mà \(\widehat{BAE}=60^o\)
=> Δ ABE là tam giác đều
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Cho AB = 15cm, AC = 20cm a, Chứng minh CA^2 = CH.CB b, Kẻ AD là tia phân giác của góc BAC (D thuộc BC). Tính HD c, Trên tia đối của tia AC lấy I bất kì. Kẻ AK vuông góc với BI tại K. Chứng minh tam giác BHK đồng dạng tam giác BIC d, Cho AI = 8cm. Tính S tam giác BHK