Tìm x, y biết:
a/ \(\overline{12x05y}\) chia hết cho cả 2; 5 và 9.
b/ 200-8(2x + 7) = 112
Tìm các chữ số x, y biết:
a) \(\overline {12x02y} \) chia hết cho cả 2; 3 và 5.
b) \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2.
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
Cho số tự nhiên A = \(\overline{3x4y}\) tìm các chữ số x, y để A chia hết cho cả 2; 5 và 9
Vì A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
Vì A chia hết cho 9
=>3+x+4+0 chia hết cho 9 hay 7+x chia hết cho 9
=>x=2
Vậy số cần tìm là 3240
Câu 1 a) Tìm số tự nhiên x;y sao cho (2x+1)(y-5)=12.
b)Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c)Tìm tất cả các số B=62xy427 biết rằng B chia hết cho 99
tìm chữ số x,y sao cho \(\overline{159xy}\)chia hết cho cả 5và 9
Để số 159xy chia hết cho 5 thì y = 0 hoặc 5
Để số 159xy chia hết cho 9 thì tổng các chữ số phải chia hết cho 9.
=> y = 0 thì x = 3,6 hoặc 9
=> y = 5 thì x = 1, 4 hoặc 7
tìm các chữ số x, y biết: 7x36y5 chia hết cho 1375
a, Tìm x,y biết \(\left|x-y-2\right|^{2017}\)+ \(\left(x+y-8\right)^{2018}\)\(\le\)0
b,Cho số \(\overline{abcd}\) chia hết cho 29. Chứng minh a+3b+9c+27d chia hết cho 29
a)\(\left|x-y-2\right|^{2017}\ge0;\left(x+y-8\right)^{2018}\ge0\)
Nên VT \(\ge0\).Kết hợp đề bài suy ra \(VT=0\)
Dấu "=' xảy ra khi \(\hept{\begin{cases}x-y-2=0\\x+y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\\x+y=8\end{cases}}\Leftrightarrow2x=10\Leftrightarrow x=5\)
Suy ra \(5-y=2\Leftrightarrow y=3\)
Vậy ....
b)Đặt \(\overline{abcd}⋮29\Leftrightarrow1000a+100b+10c+d⋮29\)
Do 1000; 100; 10; 1 không chia hết cho 29 nên \(a;b;c;d⋮29\)
Nên \(a;3b;9c;27d⋮29\Rightarrow a+3b+9c+27d⋮9^{\left(đpcm\right)}\)
Cho A=3x0 và B=71y
a) Tìm x và y biết cả x và y đều chia hết cho 2,5
b)Tìm x và y biết cả x và y đều chia hết cho 3,9
Cho số tự nhiên B = \(\overline{57a2b}\), tìm các chữ số a, b sao cho số B chia hết cho cả 2; 3; 5 nhưng không chia hết cho 9
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
bai 8
a, số \(\overline{3x4y}\) chia hết cho cả 2;3;5
b, số \(\overline{1x5y}\) chia hết cho cả 5;9
c, số \(\overline{x46y}\) chia hết cho cả 2;3;5;9
a: \(A=\overline{3x4y}\)
A chia hết cho 2 và 5 nên A chia hết cho 10
=>y=0
=>\(A=\overline{3x40}\)
A chia hết cho 3
=>3+x+4+0 chia hết cho 3
=>x+7 chia hết cho 3
=>\(x\in\left\{2;5;8\right\}\)
Vậy: Các số có thể là 3240; 3540; 3840
b: \(B=\overline{1x5y}\)
B chia hết cho 5 nên y=5 hoặc y=0
TH1: y=0
B chia hết cho 9
=>1+x+5+0 chia hết cho 9
=>x+6 chia hết cho 9
=>x=3
TH2: y=5
B chia hết cho 9
=>1+x+5+5 chia hết cho 9
=>x+11 chia hết cho 9
=>x=7
Vậy: Các số cần tìm sẽ là 1350 hoặc 1755
c: \(C=\overline{x46y}\)
C chia hết cho 2 và 5 nên C chia hết cho 10
=>y=0
=>\(C=\overline{x460}\)
C chia hết cho 3và 9 nên C chia hết cho 9
=>x+4+6+0 chia hết cho 9
=>x+10 chia hết cho 9
=>x=8
vậy: Số cần tìm là 8460