Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dang Quoc Tuan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2017 lúc 9:29

- Bảng giá trị:

x -4 -2 0 2 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 4 1 0 1 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 -4 -1 0 -1 -4

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2017 lúc 9:08

- Bảng giá trị:

x -4 -2 0 2 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 4 1 0 1 4
Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 -4 -1 0 -1 -4

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) + Từ điểm M và M’ kẻ đường thẳng song song với trục Oy cắt đồ thị Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 tại N và N’.

+ MM’N’N là hình chữ nhật ⇒ NN’ // MM’ // Ox.

Vậy NN’ // Ox.

+ Tìm tung độ N và N’.

Từ hình vẽ ta nhận thấy : N(-4 ; -4) ; N’(4 ; -4).

Tính toán :

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2019 lúc 2:52

+ Từ điểm M và M’ kẻ đường thẳng song song với trục Oy cắt đồ thị Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9 tại N và N’.

+ MM’N’N là hình chữ nhật ⇒ NN’ // MM’ // Ox.

Vậy NN’ // Ox.

+ Tìm tung độ N và N’.

Từ hình vẽ ta nhận thấy : N(-4 ; -4) ; N’(4 ; -4).

Tính toán :

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 1 2019 lúc 13:53

1) Xác định được ít nhất hai điểm phân biệt thuộc đường thẳng dChẳng hạn:  A ( − 3 ; 0 ) ;   B ( 0 ; 3 ) .

Xác định được đỉnh và ít nhất hai điểm thuộc (P) . Chẳng hạn :  O ( 0 ; 0 ) ;   C ( 6 ; 9 ) ;   E ( − 6 ; 9 ) .

Đồ thị

2) Phương trình hoành độ giao điểm:  1 4 x 2 = x + 3 ⇔ 1 4 x 2 − x − 3 = 0 ⇔ x = − 2  hoặc x= 6

Tọa độ giao điểm là  D ( − 2 ; 1 )   v à   C ( 6 ; 9 ) .  

mynameisbro
Xem chi tiết
HT.Phong (9A5)
7 tháng 12 2023 lúc 7:48

a) 

b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:

\(y=0x-5\Rightarrow y=-5\) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:

\(-5=-x\)

\(\Rightarrow x=5\)

Tọa độ điểm A là (5;-5) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:

\(-5=-\dfrac{1}{2}x\)

\(\Rightarrow\dfrac{1}{2}x=5\)

\(\Rightarrow x=5:\dfrac{1}{2}\)

\(\Rightarrow x=10\)

Tọa độ điểm B là (10;-5) 

c) Ta có: A(5;-5) và B(10;-5) 

Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\) 

Có A(5;-5) ⇒ HA = 5 (đvđd) 

Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có: 

\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd) 

 \(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\) 

Có B(10;-5) ⇒ HB = 10 (đvđd) 

Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:

\(OB^2=HB^2+OH^2\)

\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)

Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\) 

Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)

Đỗ Xuân Bách
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 21:41

Bài 4:

Thay x=1 và y=2 vào y=ax, ta được:

a=2

Mai Hồng Ngọc
Xem chi tiết
Akai Haruma
3 tháng 8 2021 lúc 18:24

Lời giải:
a. 

Đồ thị xanh lá là $y=-2x+3$, xanh nước biển là $y=\frac{1}{2}x$

b. PT hoành độ giao điểm:

$y=-2x+3=\frac{1}{2}x$
$\Leftrightarrow x=\frac{6}{5}$

$y=\frac{1}{2}.\frac{6}{5}=\frac{3}{5}$

Vậy tọa độ giao điểm là $(\frac{6}{5}, \frac{3}{5})$

c.

$Gọi ptđt có dạng $y=ax+b$

Vì $A,B\in (d)$ nên:

\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3=4a+b\\ 2=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{5}\\ b=\frac{11}{5}\end{matrix}\right.\)

Vậy ptđt là $y=\frac{1}{5}x+\frac{11}{5}$