Cho △ABC nhọn có các đường cao BM, CN cắt nhau tại H
a, CM: △ANC ∼ △AMB; △AMN ∼ △ABC
b, CMR: BM.BH + CN.CH = BC2
Cho tam giác ABC cân tại A, có góc A nhọn, hai đường BM vac CN cắt nhau tại H.
a)CM tam giác AMB = tam giác ANC; góc ABM= góc ACN
b)CM HB=HC
c)Qua M kẻ đường thẳng ME song song với CN( E thuộc AB). CM :MN là phân giác của góc EMB
d) tia phân giác của góc ABM cắt MN tại P. Tính góc MEP
Làm câu d thôi ạ
Cho tam giác ABC cân tại A, có góc A nhọn, hai đường BM vac CN cắt nhau tại H.
a)CM tam giác AMB = tam giác ANC; góc ABM= góc ACN
b)CM HB=HC
c)Qua M kẻ đường thẳng ME song song với CN( E thuộc AB). CM :MN là phân giác của góc EMB
d) tia phân giác của góc ABM cắt MN tại P. Tính góc MEP
cho tam giác abc có ba góc nhọn. bm và cn là các đường cao cắt nhau tại
a. cm abm đồng dạng anc
b. cm hm* hb=hn*hc
c. ch*cn=cm*ca
d. bh*bm=bn*ba
e. amn đồng dạng abc
Cho tam giác ABC cân tại A, có góc A nhọn, hai đường BM vac CN cắt nhau tại H.
a)CM tam giác AMB = tam giác ANC; góc ABM= góc ACN
b)CM HB=HC
c)Qua M kẻ đường thẳng ME song song với CN( E thuộc AB). CM :MN là phân giác của góc EMB
d) tia phân giác của góc ABM cắt MN tại P. Tính góc MEP
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB
mà góc HBC=góc HCB
nên góc HMN=góc HNM
góc EMN=góc MNC
góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:
góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
Cho ABC nhọn có đường cao BM và CN cắt nhau tại H.
a)Cm AMB đồng dạng ANC
b)Cm AMN đồng dạng ABC
c) Cm BH.BM+CH.CN=BC^2
d) Vẽ đường trung tuyến AD cắt BC tại D. Cho E và M lần lượt trên AB và AC sao cho AE=AM và EM cắt AD tại I Cm IE/IF=AC/AB
Giúp mình vs chủ yếu là câu d nha
a)Xét\(\Delta\)AMB và \(\Delta ANC\) có:\(\widehat{A}\):chung
\(\widehat{AMB}=\widehat{ANC}=90\)0
=>\(\Delta AMB\sim\Delta ANC\)(g.g)
b)Vì \(\Delta AMB\sim\Delta ANC\)
\(\Rightarrow\)\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
\(\Rightarrow\) \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét \(\Delta AMN\) và \(\Delta ABC\) có:
\(\widehat{A}:chung\)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(cmt\right)\)
\(\Rightarrow\Delta AMN\sim\Delta ABC\left(c.g.c\right)\)
Cho \(\Delta ABC\) nhọn (\(AB< AC\)) có hai đường cao \(BM,CN\) (\(M\varepsilon AC;N\varepsilon AB\))
\(a\)) CM: \(\Delta AMB\) đồng dạng \(\Delta ANC\) rồi suy ra \(AM.AC=AN.AB\)
b) CM: \(\Delta AMN\) đồng dạng \(\Delta ABC\) rồi suy ra\(AMN=ABC\)
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
cho tam giác ABC, AB=AC, 2 đường trung tuyến BM và CN cắt nhau tại G
a) CM: tam giác AMB= tam giác ANC
b) AG cắt BC tại H. CM: AH vuông góc với BC
c) Tính AG biết BC=12cm, AC=10cm
a) Xét \(\Delta ABC\)có : \(AB=AC\Rightarrow\Delta ABC\)cân
Có BM và CN là đường trung tuyến của tam giác \(\Rightarrow AM=AN=BN=CN\)
Xét \(\Delta AMB\)và \(\Delta ANC\)có : \(\hept{\begin{cases}AM=AN\left(cmt\right)\\\widehat{mAn}:chung\\AB=AC\left(gt\right)\end{cases}\Rightarrow\Delta AMB=\Delta ANC\left(c\cdot g\cdot c\right)}\)
b) Vì 2 đường trung tuyến BM và CN cắt nhau tại G => G là trọng tâm của \(\DeltaÂBC\)
=> AG là đường trung tuyến còn lại
mà \(\Delta ABC\)cân => AG vừa là đường trung tuyến và vừa là đường cao
\(\Rightarrow AG\perp BC\)hay \(AH\perp BC\)
Vì AH vừa là đường cao vừa là trung tuyến => \(BH=CH=\frac{1}{2}BC=\frac{1}{2}.12=6\left(cm\right)\)
Áp dụng định lý PYTAGO trong tam giác vuông \(AHC\)( do \(AH\perp BC\)) có :
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2=10^2-6^2=100-36=64\)
\(\Rightarrow AH=8\left(cm\right)\)
Theo tính chất 3 đường trung tuyến => \(\frac{AG}{AH}=\frac{2}{3}\Leftrightarrow\frac{AG}{8}=\frac{2}{3}\Leftrightarrow AG=\frac{8.2}{3}=\frac{16}{3}\left(cm\right)\)
cho tam giác ABC cân tại A,có góc A bằng 50 độ BM và CN là hai đường trung tuyến cắt nhau tại G
a)Tính các góc còn lại của tam giác ABC
b)C/m tam giác AMB=tam giác ANC
c)C/m tam giác AMB=tam giác ANC
a: góc ABC=góc ACB=(180-50)/2=65 độ
b: Xét ΔAMB và ΔANC có
AM=AN
góc BAM chung
AB=AC
=>ΔAMB=ΔANC
Cho tam giác ABC nhọn (AB<AC) 2 đường cao BM và CN cắt nhau tại H
a) Chứng minh : tam giác AMB đồng dạng tam giác ANC
suy ra AM* AC = AN*AB
b) c/m: tam giác HNB đồng dạng tam giác HMC
c)c/m : tam giác AMN đồng dạng tam giác ABC
giúp mình với