Chứng minh rằng nếu : |x| ≥ 3 ; |y| ≥ 3 ; |z| ≥ 3 thì \(A = \dfrac{xy+yz+zx}{xyz} \) có giá trị nhỏ hơn hoặc bằng 1 .
chứng minh rằng nếu x+2/x-2 = y+3/y-3 thì x/2=y/3
\(\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}\Rightarrow\left(x+2\right)\left(y-3\right)=\left(x-2\right)\left(y+3\right)\\ \Rightarrow xy-3x+2y-6=xy+3x-2y-6\\ \Rightarrow6x=4y\\ \Rightarrow3x=2y\\ \Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Chứng minh rằng f′(x) = 0 ∀x ∈ R , nếu: f ( x ) = 3 ( sin 4 x + cos 4 x ) − 2 ( sin 6 x + cos 6 x )
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
f(x) = 1 ⇒ f′(x) = 0
1)Cho 7.x+9.x chia hết cho 59 chứng minh 12.x+7.y chia hết cho 59
2)chứng minh rằng nếu abcdef chia hết cho 37 thì số abc+def chia hết cho 37
3)chứng minh rằng nếu số có 6 chữ số abcdef chia hết cho 32 thì 8.(abc+def) chia hết cho 32
ngọc ơi giờ này tao nhớ chúng mày lắm
Hãy chứng minh rằng nếu x + y = 1 thì\(x^3+y^3≥1/4\)
x3 + y3 = x3 + (1 - x)3 = 3x2 - 3x + 1 = 3 (x2 - 2.x.1/2 + 1/4) + 1 - 3/4 = 3(x-1/2)2 + 1/4 >= 1/4
Dấu "=" xảy ra khi x=1/2; y= 1/2
~ Đây là bài giải, xin lỗi nảy mình nhìn lầm
Chứng minh rằng: Nếu 2(x+y) = 5(y+z) = 3(z +x) thì 5x - 9y + 4x= 0
Chứng minh rằng: Nếu \(x^4-4x^3+5ax^2-4bx+c⋮x^3+3x^2-9x-3\)
Chứng minh rằng :
a. ( x + y + z )^3 -x^3 - y^3 -z^3 = 3(x+y)(y+z)(x+z)
b. Nếu x + y + z = 0 thì x^3 + y^3 + z^3 = 3xyz
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Chứng minh rằng nếu x3-y3 chia hết cho x+y thì x+y không là số nguyên tố
Chứng minh rằng nếu A không chia hết cho 3 thì a^2-1 chia hết cho 3 với mọi x