Số nghiệm thuộc đoạn \(\left[0;\frac{5\Pi}{2}\right]\) của phương trình : \(2sinx-1=0\) là :
A. 2
B. 3
C. 1
D. 4
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
Phương trình \(\left(2cos2x-\pi\right)\left(sinx-cosx\right)=0\) có số nghiệm thuộc đoạn \(\left[-\pi;\pi\right]\) là
A. 4
B. 5
C. 3
D. 2
=>2cos2x=pi(loại) hoặc sin x-cosx=0
=>sin x-cosx=0
=>sin(x-pi/4)=0
=>x-pi/4=kpi
=>x=kpi+pi/4
mà x\(\in\left[-pi;pi\right]\)
nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)
=> D
Cho hàm số y = f(x) liên tục trên R và f(0) = f(1). Chứng minh phương trình \(f\left(x+\dfrac{1}{3}\right)-f\left(x\right)=0\) luôn có nghiệm thuộc đoạn [0;1]
Đặt \(g\left(x\right)=f\left(x+\dfrac{1}{3}\right)-f\left(x\right)\)
Hiển nhiên \(g\left(x\right)\) cũng liên tục trên R
Ta có: \(g\left(0\right)=f\left(\dfrac{1}{3}\right)-f\left(0\right)\)
\(g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(\dfrac{2}{3}\right)\)
\(g\left(\dfrac{1}{3}\right)=f\left(\dfrac{2}{3}\right)-f\left(\dfrac{1}{3}\right)\)
Cộng vế với vế:
\(g\left(0\right)+g\left(\dfrac{1}{3}\right)+g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(0\right)=0\)
- Nếu tồn tại 1 trong 3 giá trị \(g\left(0\right);g\left(\dfrac{1}{3}\right);g\left(\dfrac{2}{3}\right)\) bằng 0 thì hiển nhiên pt có nghiệm
- Nếu cả 3 giá trị đều khác 0 \(\Rightarrow\) tồn tại ít nhất 2 trong 3 giá trị \(g\left(0\right)\) ; \(g\left(\dfrac{1}{3}\right)\) ; \(g\left(\dfrac{2}{3}\right)\) trái dấu
\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 3 tích số: \(g\left(0\right).g\left(\dfrac{1}{3}\right)\) ; \(g\left(0\right).g\left(\dfrac{2}{3}\right)\) ; \(g\left(\dfrac{1}{3}\right).g\left(\dfrac{2}{3}\right)\) âm
\(\Rightarrow\) Pt \(g\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left[0;1\right]\)
số nghiệm của phương trình \(\sin\left(2x+\frac{\pi}{4}\right)=-1\) thuộc đoạn \(\left[0;\pi\right]\)là bao nhiêu ?
Tìm điều kiện của m để phương trình \(2sinx+m=0\) có đúng 2 nghiệm thuộc đoạn \(\left[0;\pi\right]\)
Tìm m để phương trình \(2\sin x=2m+3\) có nghiệm thuộc đoạn \(\left[0;\pi\right]\)
2*sin x=2m+3
=>sin x=m+3/2
\(x\in\left[0;pi\right]\)
=>sin x thuộc [0;1]
=>0<=m+3/2<=1
=>-3/2<=m<=-1/2
số nghiệm của phương trình \(\frac{\sin3x}{\cos x+1}=0\) thuộc đoạn \(\left[2\pi;4\pi\right]\)là bao nhiêu ?
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\)
Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)
\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)
\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)
Tập hợp tất cả các giá trị thực của tham số m để phương trình x6 +6x4 -m3x3 +(15 -3m2)x2 -6mx +10 =0 có đúng hai nghiệm phân biệt thuộc đoạn \(\left[\dfrac{1}{2};2\right]\) là?
\(\dfrac{cos4x}{cos2x}=tan2x\)
có số nghiệm thuộc khoảng (0;\(\left(0;\dfrac{\pi}{2}\right)\)
\(\dfrac{cos4x}{cos2x}=tan2x\). ĐKXĐ : \(x\ne\dfrac{\pi}{4}+k.\dfrac{\pi}{2}\), k là số nguyên (tức là sin2x khác 1 và -1)
⇒ cos4x = sin2x
⇔ 1 - 2sin22x = sin2x
⇔ 2sin22x + sin2x - 1 = 0
⇔ \(\left[{}\begin{matrix}sin2x=-1\left(/\right)\\sin2x=\dfrac{1}{2}\left(V\right)\end{matrix}\right.\)
Mà x ∈ \(\left(0;\dfrac{\pi}{2}\right)\)
⇒ \(\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)
tìm tất cả các giá trị nguyên của m để phương trình \(2\left(x^2+2x\right)^2-\left(4m-3\right)\left(x^2+2x\right)+1-2m=0\) có 3 nghiệm thuộc đoạn [-3;0]