=>2cos2x=pi(loại) hoặc sin x-cosx=0
=>sin x-cosx=0
=>sin(x-pi/4)=0
=>x-pi/4=kpi
=>x=kpi+pi/4
mà x\(\in\left[-pi;pi\right]\)
nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)
=> D
=>2cos2x=pi(loại) hoặc sin x-cosx=0
=>sin x-cosx=0
=>sin(x-pi/4)=0
=>x-pi/4=kpi
=>x=kpi+pi/4
mà x\(\in\left[-pi;pi\right]\)
nên \(x\in\left\{\dfrac{pi}{4};-\dfrac{3}{4}pi\right\}\)
=> D
Tổng các nghiệm của phương trình \(2cos3x\left(2cos2x+1\right)=1\) trên đoạn \(\left[-4\pi;6\pi\right]\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
1) tìm nghiệm của phương trình: \(\frac{cos4x}{cos2x}=tan2x\) trong khoảng \(\left(0;\frac{\pi}{2}\right)\)
2) tìm tất cả các nghiệm của phương trình: sin8x+cos4x=1+2sin2x.cos6x thuộc \(\left(-\pi;\pi\right)\)
3) tìm tất cả các nghiệm của phương trình: \(\frac{\sqrt{3}sin3x-2sinx.sin2x-cosx}{sinx}=0\) thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
4) tìm tất cả các nghiệm của phương trình: sinx+ sin2x+ sin3x=0 thuộc \(\left(0;\pi\right)\)
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
1. Pt: \(sin^22x-2cos^2x+\frac{3}{4}=0\) có nghiệm là?
2. Số nghiệm của pt: \(2cos2x+2cosx-\sqrt{2}=0\) thỏa đk: \(\frac{-\pi}{2}< x< \frac{5\pi}{2}\)?
3. Số nghiệm của pt: \(2tanx-2cotx-3=0\) trong khoảng: \(\left(\frac{-\pi}{2};\pi\right)\) là?
4. Nghiệm âm lớn nhất của pt: \(\frac{\sqrt{3}}{sin^2x}=3cotx+\sqrt{3}\) là?
5. Tổng các nghiệm của pt: \(\sqrt{3}tan^2x-\left(3+\sqrt{3}\right)tanx+3=0\) trong: \(\left(-2019\pi;2019\pi\right)\) thuộc khoảng nào trong các khoảng sau?
a. \(\left(-\infty;-3\right)\) b. \(\left(-3;5\right)\) c. (5;20) d. \(\left(20;+\infty\right)\)
6. Pt: 1 + sinx - cosx - sin2x = 0 có bao nhiêu nghiệm trên: \(\left[0;\frac{\pi}{2}\right]\)?
7. Tổng các nghiệm của pt: \(sinxcosx+\left|cosx+sinx\right|=1\) trên \(\left(0;2\pi\right)\) là?
giải các pt
a) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
b) \(6sinx-2cos^3x=\frac{5sin4x.sinx}{2cos2x}\)
c) \(cos^3x=2sinx.sin\left(\frac{\pi}{3}-x\right).sin\left(x+\frac{\pi}{3}\right)\)
d) \(cos2x\left(sinx+cosx\right)-4cos^3x\left(1+sin2x\right)=0\)
Tính tổng S các nghiệm của phương trình \(\left(2cos2x+5\right)\left(sin^4x-cos^4x\right)+3=0\) trong khoảng \(\left(0;2\pi\right)\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)