Tìm a và b (b > -1) để hai bất phương trình sau tương đương :
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)
và
\(\left|x+a-2\right|\le b+1\)
Tìm a và b (b > -1) để hai bất phương trình sau tương đương :
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)
và
\(\left|x+a-2\right|\le b+1\)
a) Vẽ trên cùng một hệ trục tọa độ đồ thị các hàm số sau :
\(y=f\left(x\right)=\left|x+3\right|-1\)
\(y=g\left(x\right)=\left|2x-m\right|\)
trong đó m là tham số
Xác định hoành độ các giao điểm của mỗi đồ thị với trục hoành
b) Tìm các giá trị của tham số m để bất phương trình sau nghiệm đúng với mọi giá trị của x
\(\left|2x-m\right|>\left|x+3\right|-1\)
Thảo luận (1)Hướng dẫn giải
a)
f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2
g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2
b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)
\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)
(Trả lời bởi ngonhuminh)