Bài tập cuối chương VI

Câu 1 (SGK Cánh Diều - Tập 2 - Trang 103)

Hướng dẫn giải

Vì A và B là hai biến cố xung khắc nên \(A \cap B = \emptyset \). Do đó, \(P\left( {A \cap B} \right) = 0\).

Suy ra, \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{0}{{0,4}} = 0\).

Chọn D

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 2 (SGK Cánh Diều - Tập 2 - Trang 103)

Hướng dẫn giải

Xét hai biến cố: A: “Viên bi lấy ra lần thứ nhất là viên bi vàng”; B: “Viên bi lấy ra lần thứ hai là viên bi vàng”.

Ban đầu có 28 trong 40 viên bi là bi vàng. Xác suất để lấy được bi vàng lần đầu là \(P(A) = \frac{{28}}{{40}}\).

Sau khi lấy ra viên bi vàng lần thứ nhất, còn 27 viên bi vàng trong 39 viên bi còn lại. Xác suất để lần thứ hai lấy ra viên bi vàng biết lần đầu đã lấy được bi vàng là \(P(B|A) = \frac{{27}}{{39}}\).

Áp dụng công thức nhân xác suất, ta có xác suất hai lần đều lấy được bi vàng là \(P(A \cap B) = P(A).P(B|A) = \frac{{28}}{{40}}.\frac{{27}}{{39}} = \frac{{63}}{{130}}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 3 (SGK Cánh Diều - Tập 2 - Trang 103)

Hướng dẫn giải

a) Xét hai biến cố: A: “Chiếc thăm lấy ra là trúng thưởng”, B: “Chiếc thăm lấy ra là sản phẩm loại I”.

Ta có: \(P\left( B \right) = \frac{{200}}{{500}} = 0,4,P\left( {\overline B } \right) = 0,6,P\left( {A|B} \right) = 0,06,P\left( {A|\overline B } \right) = 0,04\).

Xác suất để chiếc thăm lấy được ra trúng thưởng là:

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,4.0,06 + 0,6.0,04 = 0,048\).

b) Nếu chiếc thăm lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc loại sản phẩm I là: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,4.0,06}}{{0,048}} = 0,5\).

Nếu chiếc thăm lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc loại sản phẩm II là: \(P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,5 = 0,5\).

Vậy nếu chiếc thăm được lấy ra là trúng thưởng thì xác suất chiếc thăm đó thuộc hai loại sản phẩm I và II là như nhau.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 4 (SGK Cánh Diều - Tập 2 - Trang 103)

Hướng dẫn giải

a) Ta có: \(P\left( A \right) = 0,8,P\left( B \right) = 0,9,P\left( {A \cap B} \right) = 0,8\).

Vì \(P\left( A \right).P\left( B \right) = 0,8.0,9 = 0,72 \ne P\left( {A \cap B} \right)\) nên hai biến cố A và B không độc lập với nhau.

b) Ta có: \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{0,8}}{{0,8}} = 1\).

Vậy xác suất xạ thủ đó bắn trúng bia số 2 biết xạ thủ đó bắn trúng bia số 1 là 1.

c) Theo công thức xác suất toàn phần ta có: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).

Do đó, \(P\left( {B|\overline A } \right) = \frac{{P\left( B \right) - P\left( A \right).P\left( {B|A} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,9 - 0,8.1}}{{1 - 0,8}} = 0,5\).

Vậy xác suất xạ thủ đó bắn trúng bia số 2 biết xạ thủ đó bắn không trúng bia số 1 là 0,5.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 5 (SGK Cánh Diều - Tập 2 - Trang 103)

Hướng dẫn giải

a) Xét hai biến cố: A: “Người được chọn bị nhiễm bệnh”; B: “Người được chọn có phản ứng dương tính”.

Vì trong nhóm có 2 người nhiễm bệnh và 58 người còn lại không nhiễm bệnh nên \(P\left( A \right) = \frac{1}{{30}},P\left( {\overline A } \right) = \frac{{29}}{{30}}\).

Vì đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7% nên \(P\left( {B|A} \right) = 0,85;P\left( {B|\overline A } \right) = 0,07\).

Sơ đồ cây biểu thị tình huống đã cho như sau:

b) Ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)

\( = \frac{{\frac{1}{{30}}.0,85}}{{\frac{1}{{30}}.0,85 + \frac{{29}}{{30}}.0,07}} = \frac{{85}}{{288}} \approx 0,295\).

Vậy xác suất để X là người nhiễm bệnh là 0,295.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)