Bài 1: Xác xuất có điều kiện

Bài tập 1 (SGK Cánh Diều - Tập 2 - Trang 95)

Hướng dẫn giải

Vì A, B là hai biến cố độc lập nên \(P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right) = 0,8.0,25 = 0,2\).

Do đó, \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,2}}{{0,25}} = 0,8\).

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 4 (SGK Cánh Diều - Tập 2 - Trang 95)

Bài tập 5 (SGK Cánh Diều - Tập 2 - Trang 96)

Hướng dẫn giải

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{3.7}}{{7.7}} = \frac{3}{7}\). Suy ra \(P\left( {\overline A } \right) = \frac{4}{7}\).

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{7.4}}{{7.7}} = \frac{4}{7}\). Suy ra, \(P\left( {\overline B } \right) = \frac{3}{4}\).

Biến cố \(A \cap B\): “Lấy ra bóng màu xanh được lấy ra ở lần thứ nhất và bóng màu đỏ ở lần thứ hai”. Suy ra \(P\left( {A \cap B} \right) = \frac{{3.4}}{{7.7}} = \frac{{12}}{{49}}\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{{12}}{{49}}}}{{\frac{4}{7}}} = \frac{3}{7}\)

Biến cố \(A \cap \overline B \): “Lấy ra bóng màu xanh được lấy ra ở cả hai lần”. Suy ra \(P\left( {A \cap \overline B } \right) = \frac{{3.3}}{{7.7}} = \frac{9}{{49}}\). Khi đó, \(P\left( {A|\overline B } \right) = \frac{{P\left( {A \cap \overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{\frac{9}{{49}}}}{{\frac{3}{7}}} = \frac{3}{7}\).

Do đó, ta có: \(P\left( A \right) = P\left( {A|B} \right) = P\left( {A|\overline B } \right) = \frac{3}{7}\left( 1 \right)\).

Lại có: \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{12}}{{49}}}}{{\frac{3}{7}}} = \frac{4}{7},P\left( {B|\overline A } \right) = \frac{{P\left( {\overline A  \cap B} \right)}}{{P\left( {\overline A } \right)}} = \frac{{\frac{{4.4}}{{49}}}}{{\frac{4}{7}}} = \frac{4}{7}\).

Do đó, \(P\left( B \right) = P\left( {B|A} \right) = P\left( {B|\overline A } \right) = \frac{4}{7}\left( 2 \right)\).

Từ (1) và (2) suy ra A và B là hai biến cố độc lập.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 2 - Trang 95)

Hướng dẫn giải

A: “Nhà được chọn có ô tô”. \(P(A) = \frac{{50 + 20}}{{100}} = 0,7\).

B: “Nhà được chọn gắn biển số chẵn”. \(P(B) = \frac{{60}}{{100}} = 0,6\).

\(\overline B \): “Nhà được chọn gắn biển số lẻ”. \(P(\overline B ) = \frac{{60}}{{100}} = 0,6\).

a) Xác suất nhà được chọn vừa có ô tô vừa gắn biển số chẵn là \(P(A \cap B) = \frac{{50}}{{100}} = 0,5\).

Xác suất nhà được chọn có ô tô, biết rằng nhà đó gắn biển số chẵn, là:

\(P(A|B) = \frac{{P(A \cap B)}}{{P(B)}} = \frac{{0,5}}{{0,6}} = \frac{5}{6}\).

Chọn D

b) Xác suất nhà được chọn vừa có ô tô vừa gắn biển số lẻ là \(P(A \cap \overline B ) = \frac{{20}}{{100}} = 0,2\).

Xác suất nhà được chọn gắn biển số lẻ, biết rằng nhà đó có ô tô, là:

\(P(\overline B |A) = \frac{{P(A \cap \overline B )}}{{P(A)}} = \frac{{0,2}}{{0,7}} = \frac{2}{7}\).

Chọn C

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 2 - Trang 96)

Hướng dẫn giải

a) \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{0,4}}{{0,6}} = \frac{2}{3}\).

b) Vì \(A \cap \overline B \) và \(A \cap B\) là hai biến cố xung khắc nên \(P(A) = P(A \cap \overline B ) + P(A \cap B)\).

Suy ra \(P(A \cap \overline B ) = P(A) - P(A \cap B) = 0,6 - 0,4 = 0,2\).

c) \(P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - \frac{2}{3} = \frac{1}{3}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 2 - Trang 96)

Hướng dẫn giải

Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”, B là biến cố: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, \(A \cap B\) là biến cố: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

Các kết quả thuận lợi của biến cố B là: (4; 1), (4; 2), (4; 3), (4; 4), (4; 5), (4; 6) nên \(n\left( B \right) = 6\). Do đó, \(P\left( B \right) = \frac{6}{{6.6}} = \frac{1}{6}\).

Kết quả thuận lợi của biến cố \(A \cap B\) là: (4; 2) nên \(n\left( {A \cap B} \right) = 1.\) Do đó, \(P\left( {A \cap B} \right) = \frac{1}{{36}}\).

Khi đó: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).

Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm là \(\frac{1}{6}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 8 (SGK Cánh Diều - Tập 2 - Trang 96)

Hướng dẫn giải

Gọi hai biến cố:

A: "Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp".

B: "Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp".

Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là P(AB).

Xác suất để lấy ra một sản phẩm chất lượng thấp trong lần đầu tiên: \(P(A) = \frac{5}{{20}} = \frac{1}{4}\).

Sau khi đã lấy một sản phẩm chất lượng thấp, số sản phẩm còn lại trong lô là 19 sản phẩm, trong đó có 4 sản phẩm chất lượng thấp.

Xác suất để lấy ra một sản phẩm chất lượng thấp trong lần thứ hai, sau khi sản phẩm đầu lấy ra chất lượng thấp: \(P(B|A) = \frac{4}{{19}}\).

Ta có \(P(AB) = P(A).P(B|A) = \frac{1}{4}.\frac{4}{{19}} = \frac{1}{{19}}\).

Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là \(\frac{1}{{19}}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 9 (SGK Cánh Diều - Tập 2 - Trang 96)

Bài tập 7 (SGK Cánh Diều - Tập 2 - Trang 96)

Hướng dẫn giải

Gọi A là biến cố: “Chiếc áo sơ mi được chọn qua được lần kiểm định thứ nhất”, B là biến cố: “Chiếc áo sơ mi được chọn qua được lần kiểm định thứ hai”. Khi đó, \(A \cap B\) là biến cố: “Chiếc áo sơ mi được chọn đủ tiêu chuẩn xuất khẩu”.

Theo đầu bài ta có: \(P\left( A \right) = 0,98,P\left( {B|A} \right) = 0,95\).

Xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là: \(P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = 0,98.0,95 = 0,931\).


(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 3 (SGK Cánh Diều - Tập 2 - Trang 95)

Hướng dẫn giải

A: “Bạn Nam chọn được máy tính đã cài đặt Python”.

B: “Bạn Nam chọn được máy tính được đánh số lẻ”. \(P(B) = \frac{{20}}{{40}} = 0,5\).

\(\overline B \): “Bạn Nam chọn được máy tính được đánh số chẵn”. \(P(\overline B ) = \frac{{20}}{{40}} = 0,5\).

Xác suất chọn được một máy tính đã cài đặt Python được đánh số lẻ là \(P(A \cap B) = 0,45\).

Xác suất chọn được một máy tính đã cài đặt Python được đánh số chẵn là \(P(A \cap \overline B ) = 0,375\).

a) Xác suất bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python, biết rằng máy tính đó được đánh số lẻ, là:

\(P(A|B) = \frac{{P(A \cap B)}}{{P(B)}} = \frac{{0,45}}{{0,5}} = \frac{9}{{10}}\).

Chọn C

b) Vì biến cố B và \(\overline B \) xung khắc, mà \(P(B) + P(\overline B ) = 1\) nên \(P(A \cap B) + P(A \cap \overline B ) = P(A)\).

Suy ra P(A) = 0,375 + 0,45 = 0,825.

Xác suất bạn Nam chọn được máy tính đánh số chẵn, biết rằng máy tính đó đã cài đặt phần mềm lập trình Python, là:

\(P(\overline B |A) = \frac{{P(A \cap \overline B )}}{{P(A)}} = \frac{{0,375}}{{0,825}} = \frac{5}{{11}}\).

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)