Một xạ thủ bắn vào bia số 1 và bia số 2. Xác suất để xạ thủ đó bắn trúng bia số 1, bia số 2 lần lượt là 0,8; 0,9. Xác suất để xạ thủ đó bắn trúng cả hai bia là 0,8. Xét hai biến cố sau:
A: “Xạ thủ đó bắn trúng bia số 1”;
B: “Xạ thủ đó bắn trúng bia số 2”.
a) Hai biến cố A và B có độc lập hay không?
b) Biết xạ thủ đó bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.
c) Biết xạ thủ đó không bắn trúng bia số 1, tính xác suất xạ thủ đó bắn trúng bia số 2.
a) Ta có: \(P\left( A \right) = 0,8,P\left( B \right) = 0,9,P\left( {A \cap B} \right) = 0,8\).
Vì \(P\left( A \right).P\left( B \right) = 0,8.0,9 = 0,72 \ne P\left( {A \cap B} \right)\) nên hai biến cố A và B không độc lập với nhau.
b) Ta có: \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{0,8}}{{0,8}} = 1\).
Vậy xác suất xạ thủ đó bắn trúng bia số 2 biết xạ thủ đó bắn trúng bia số 1 là 1.
c) Theo công thức xác suất toàn phần ta có: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).
Do đó, \(P\left( {B|\overline A } \right) = \frac{{P\left( B \right) - P\left( A \right).P\left( {B|A} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,9 - 0,8.1}}{{1 - 0,8}} = 0,5\).
Vậy xác suất xạ thủ đó bắn trúng bia số 2 biết xạ thủ đó bắn không trúng bia số 1 là 0,5.