Bài tập cuối chương 6

Bài 6.12 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

\(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{2}{5}.\frac{1}{3} = \frac{2}{{15}}\)

Chọn A

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.13 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

\(P\left( {B\overline A } \right) = P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \left( {1 - \frac{2}{5}} \right).\frac{1}{4} = \frac{3}{{20}}\)

Chọn D

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.14 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

Vì AB và \(\overline A B\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\)

Do đó, \(P\left( B \right) = P\left( {AB} \right) + P\left( {\overline A B} \right) = \frac{2}{{15}} + \frac{3}{{20}} = \frac{{17}}{{60}}\)

Chọn B

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.15 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

Bình nhận được 2 chiếc kẹo sô cô la đen khi cả hai lần An đều lấy được 2 chiếc sô cô la đen. Khi đó, xác suất để Bình nhận được 2 chiếc kẹo sô cô la đen là: \(\frac{6}{{10}}.\frac{5}{9} = \frac{1}{3}\)

Chọn A

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.16 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

Bình nhận được 2 chiếc kẹo sô cô la trắng khi cả hai lần An đều lấy được 2 chiếc sô cô la trắng. Khi đó, xác suất để Bình nhận được 2 chiếc kẹo sô cô la trắng là: \(\frac{4}{{10}}.\frac{3}{9} = \frac{2}{{15}}\)

Chọn B

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.17 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

Xác suất để Bình nhận được chiếc kẹo sô cô la đen ở lần thứ nhất, chiếc kẹo sô cô la trắng ở lần thứ hai là: \(\frac{6}{{10}}.\frac{4}{9} = \frac{4}{{15}}\).

Không có đáp án

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.18 (SGK Kết nối tri thức với cuộc sống - Trang 79)

Hướng dẫn giải

Không gian mẫu \(\Omega \) là tập hợp gồm 4 000 bệnh nhân thử nghiệm nên \(n\left( \Omega  \right) = 4000\)

a) Gọi A là biến cố: “Người đó uống thuốc X”, B là biến cố “Người đó khỏi bệnh”.

Khi đó biến cố AB là: “Người đó uống thuốc X và khỏi bệnh”

Ta có: \(1600 + 800 = 2400\) người uống thuốc X nên \(n\left( A \right) = 2400\). Do đó, \(P\left( A \right) = \frac{{2400}}{{4000}}\)

Trong số những người uống thuốc X, có 1 600 người khỏi bệnh nên \(n\left( {AB} \right) = 1\;600\)

Do đó, \(P\left( {AB} \right) = \frac{{1600}}{{4000}}\). Vậy \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{1600}}{{2400}} = \frac{2}{3}\)

b) Gọi A là biến cố: “Người đó uống thuốc Y”, B là biến cố “Người đó khỏi bệnh”

Khi đó biến cố AB là: “Người đó uống thuốc Y và khỏi bệnh”.

Ta có: \(1200 + 1600 = 2800\) khỏi bệnh nên \(n\left( B \right) = 2800\). Do đó, \(P\left( B \right) = \frac{{2800}}{{4000}}\)

Trong số những người khỏi bệnh, có 1200 người uống thuốc Y nên \(n\left( {AB} \right) = 1200\)

Do đó, \(P\left( {AB} \right) = \frac{{1200}}{{2800}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{1200}}{{2800}} = \frac{3}{7}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.19 (SGK Kết nối tri thức với cuộc sống - Trang 80)

Hướng dẫn giải

Có 25 học sinh trong một nhóm nên số cách chọn một học sinh trong nhóm là 25. Do đó, \(n\left( \Omega  \right) = 25\)

Gọi A là biến cố: “Học sinh học khá môn Toán”, B là biến cố: “Học sinh học khá môn Vật lí”.

a) Khi đó, biến cố AB là: “Học sinh học khá môn Toán, đồng thời học khá môn Vật lí”

Số học sinh học khá cả 2 môn Toán và Vật lí: \(14 + 16 + 1 - 25 = 6\) nên \(n\left( {AB} \right) = 6\)

Do đó, \(P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{25}}\)

b) Số học sinh học khá Toán nhưng không khá Vật lí là: \(14 - 6 = 8\) (học sinh)

Xác suất để chọn được học sinh khá môn Toán, nhưng không học khá môn Vật lí là: \(\frac{8}{{25}}\)

c) Xác suất chọn được một học sinh khá môn Toán, biết rằng học sinh đó học khá môn Vật lí là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{6}{{25}}}}{{\frac{{16}}{{25}}}} = \frac{3}{8}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.20 (SGK Kết nối tri thức với cuộc sống - Trang 80)

Hướng dẫn giải

Gọi A là biến cố: “Bắt được con gà mái”, B là biến cố: “Gà được bắt ở chuồng I”, \(\overline B \) là biến cố “Gà được bắt ở chuồng II”. Khi đó, \(P\left( B \right) = \frac{1}{3},P\left( {\overline B } \right) = \frac{2}{3}\).

Xác suất bắt được con gà mái nếu con gà đó ở chuồng I là: \(P\left( {A|B} \right) = \frac{5}{7}\)

Xác suất bắt được con gà mái nếu con gà đó ở chuồng II là: \(P\left( {A|\overline B } \right) = \frac{3}{8}\)

Theo công thức xác suất toàn phần ta có:

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{1}{3}.\frac{5}{7} + \frac{2}{3}.\frac{3}{8} = \frac{{41}}{{84}}\)

Vậy xác suất để bác Mai bắt được con gà mái là \(\frac{{41}}{{84}}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.21 (SGK Kết nối tri thức với cuộc sống - Trang 80)

Hướng dẫn giải

Gọi A là biến cố: “Người bị bệnh nền”, B là biến cố: “Người có phản ứng phụ sau tiêm”

Khi đó, \(P\left( A \right) = 0,18,P\left( {\overline A } \right) = 0,82\), \(P\left( {B|A} \right) = 0,35,P\left( {B|\overline A } \right) = 0,16\)

Theo công thức Bayes ta có:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}} = \frac{{0,18.0,35}}{{0,18.0,35 + 0,82.0,16}} = \frac{{315}}{{971}}\)

Vậy xác suất để người này có bệnh nền nếu chọn ngẫu nhiên một người được tiêm vaccine biết người này có phản ứng phụ là \(\frac{{315}}{{971}}\).

(Trả lời bởi datcoder)
Thảo luận (1)