Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài 1 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

Hình 96a: Hình lăng trụ lục giác đều.

Hình 96b: Hình chóp cụt tứ giác đều.

(Trả lời bởi Khôi Nguyễn)
Thảo luận (2)

Bài 2 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

loading...

a) \(ABCD\) là hình vuông \( \Rightarrow AC = B{\rm{D}} = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

Xét \(\Delta ASC\) có: \(S{A^2} + S{C^2} = 2{a^2} = A{C^2},SA = SC\)

Vậy tam giác \(ASC\) là tam giác vuông cân tại \(S\).

Xét \(\Delta BSD\) có: \(S{B^2} + S{D^2} = 2{a^2} = B{{\rm{D}}^2},SB = SD\)

Vậy tam giác \(BSD\) là tam giác vuông cân tại \(S\).

b) \(\Delta ASC\) vuông cân tại \(S\) \( \Rightarrow SO \bot AC\)

\(\Delta BSD\) vuông cân tại \(S\) \( \Rightarrow SO \bot B{\rm{D}}\)

\( \Rightarrow SO \bot \left( {ABCD} \right)\)

c) \(SO \bot \left( {ABCD} \right) \Rightarrow \left( {SA,\left( {ABCD} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO}\)

\(\Delta ASC\) vuông cân tại \(S\) \( \Rightarrow \widehat {SAO} = {45^ \circ }\)

Vậy \(\left( {SA,\left( {ABCD} \right)} \right) = {45^ \circ }\).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 3 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

loading...

a) \(ABCD\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\(BB' \bot \left( {ABCD} \right) \Rightarrow BB' \bot AC\)

\(\left. \begin{array}{l} \Rightarrow AC \bot \left( {B{\rm{DD'B'}}} \right)\\AC \subset \left( {ACC'A'} \right)\end{array} \right\} \Rightarrow \left( {ACC'A'} \right) \bot \left( {B{\rm{DD}}'B'} \right)\)

b) \(ABCD\) là hình vuông \( \Rightarrow AB\parallel C{\rm{D}}\)

\(CDD'C'\) là hình chữ nhật \( \Rightarrow C{\rm{D}}\parallel C'{\rm{D}}'\)

\( \Rightarrow AB\parallel C'{\rm{D}}' \Rightarrow d\left( {AB,C'{\rm{D}}'} \right) = d\left( {B,C'{\rm{D}}'} \right)\)

\(A'B'C'D'\) là hình vuông \( \Rightarrow C'D' \bot B'C'\)

\(CDD'C'\) là hình chữ nhật \( \Rightarrow C'D' \bot CC'\)

\( \Rightarrow C'D' \bot \left( {BCC'B'} \right) \Rightarrow C'D' \bot BC' \Rightarrow d\left( {B,C'{\rm{D}}'} \right) = BC'\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

\(\begin{array}{l}CC' \bot \left( {ABCD} \right) \Rightarrow \left( {AC',\left( {ABCD} \right)} \right) = \left( {AC',AC} \right) = \widehat {CAC'} = {60^ \circ }\\ \Rightarrow CC' = AC.\tan \widehat {CAC'} = a\sqrt 6 \end{array}\)

\(\Delta BCC'\) vuông tại \(C \Rightarrow BC{'^2} = \sqrt {B{C^2} + CC{'^2}}  = a\sqrt 7 \)

Vậy \(d\left( {AB,C'{\rm{D}}'} \right) = a\sqrt 7 \).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 4 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

Thể tích chiếc bánh chưng là:

        \(15.15.6=1350\left(cm^3\right)\)

(Trả lời bởi Mai Trung Hải Phong)
Thảo luận (2)

Bài 5 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

Diện tích đáy của miếng pho mát là:

       \(\dfrac{1}{2}.12.12=72\left(cm^2\right)\)

Thế tích miếng pho mát là:

       \(72.10=720\left(cm^3\right)\)

Khối lượng miếng pho mát là:

       \(3.720=2160\left(g\right)\)

(Trả lời bởi Mai Trung Hải Phong)
Thảo luận (1)

Bài 6 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

loading...

Mô hình hoá đèn đá muối bằng hình chóp tứ giác đều \(S.ABC{\rm{D}}\).

Gọi \(O\) là tâm của đáy.

\(\Delta SAC\) cân tại \(S\) \( \Rightarrow SO \bot AC\)

\(\Delta SBD\) cân tại \(S\) \( \Rightarrow SO \bot B{\rm{D}}\)

\( \Rightarrow SO \bot \left( {ABCD} \right)\)

\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại \(O \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 2 }}{2}\)

\(\begin{array}{l}{S_{ABC{\rm{D}}}} = A{B^2} = {a^2}\\{V_{S.ABC{\rm{D}}}} = \frac{1}{3}.{S_{ABC{\rm{D}}}}.SO = \frac{{{a^3}\sqrt 2 }}{6}\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7 trang 115 (SGK Cánh Diều)

Hướng dẫn giải

loading...

Mô hình hoá chân tháp bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 5,A'B' = 2,CC' = 3\).

\(ABCD\) là hình vuông

\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = 5\sqrt 2  \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\)

\(A'B'C'D'\) là hình vuông \( \Rightarrow A'C' = \sqrt {A'B{'^2} + B'C{'^2}}  = 2\sqrt 2  \Rightarrow C'O' = \frac{1}{2}A'C' = \sqrt 2 \)

Kẻ \(C'H \bot OC\left( {H \in OC} \right)\)

\(OHC'O'\) là hình chữ nhật \( \Rightarrow OH = O'C' = \sqrt 2 ,OO' = C'H \Rightarrow CH = OC - OH = \frac{{3\sqrt 2 }}{2}\)

\(\Delta CC'H\) vuông tại \(H \Rightarrow C'H = \sqrt {CC{'^2} - C{H^2}}  = \frac{{3\sqrt 2 }}{2} \Rightarrow OO' = C'H = \frac{{3\sqrt 2 }}{2}\)

Diện tích đáy lớn là: \(S = A{B^2} = {5^2} = 25\left( {{m^2}} \right)\)

Diện tích đáy bé là: \(S' = A'B{'^2} = {2^2} = 4\left( {{m^2}} \right)\)

Thể tích hình chóp cụt là:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3}.\frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25.4}  + 4} \right) = \frac{{39\sqrt 2 }}{2}\left( {{m^3}} \right)\)

Số tiền để mua bê tông tươi làm chân tháp là: \(\frac{{39\sqrt 2 }}{2}.1470000 \approx 40538432\) (đồng).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)