Chứng minh rằng nếu 3 số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau ?
Chứng minh rằng nếu 3 số lập thành một cấp số nhân, đồng thời lập thành cấp số cộng thì ba số ấy bằng nhau ?
Cho cấp số nhân \(\left(u_n\right)\) có công bội là q và số các số hạng là chẵn. Gọi \(S_c\) là tổng các số hạng có chỉ số chẵn và \(S_l\) là tổng các số hạng có chỉ số lẻ.
Chứng minh rằng \(q=\dfrac{S_c}{S_l}\) ?
Thảo luận (1)Hướng dẫn giải
Có thể có một tam giác vuông mà số đo các cạnh của nó lập thành một cấp số cộng không ?
Thảo luận (1)Hướng dẫn giảiGọi số đo ba cạnh của tam giác vuông là \(x-d,x,x+d\)
Theo giả thiết ta có \(\left(x+d\right)^2=\left(x-d\right)^2+x^2\) (1)
Từ (1) tìm được \(x=0;x=4d\)
Như vậy có thể có tam giác vuông thỏa mãn đầu bài, các cạnh của nó là 3d, 4d, 5d. Đặc biệt, nếu \(d=1\) thì tam giác vuông có cách cạnh là 3, 4, 5 (tam giác Ai Cập)
(Trả lời bởi Nguyen Thuy Hoa)
Tính tổng :
a) \(\dfrac{1}{2}+\dfrac{3}{2^2}+\dfrac{5}{2^3}+....+\dfrac{2n-1}{2^n}\)
b) \(1^2-2^2+3^2-4^2+....+\left(-1\right)^{n-1}.n^2\)
Thảo luận (1)Hướng dẫn giảiGiải
a) HD: Đặt tổng là S\(_n\) và tính 2S\(_n\)
ĐS : S\(_n\)=3−\(\frac{2n+3}{2^n}\)
b) HD: n\(^2\)- (n+1)\(^2\)= -2n-1
Ta có: 1\(^2\)-2\(^2\)= -3; 3\(^2\) - 4\(^2\)= -7;....
Ta có: u\(_1\)= -3, d= -4 và tính S\(_n\) trong từng trường hợp n chẵn, lẻ.
(Trả lời bởi Khánh Ly )
Sn=3−2n+32nb) HD : b) HD : n2−(n+1)2=−2n−1n2−(n+1)2=−2n−1 Ta có 12−22=−3;32−42=−7;...12−22=−3;32−42=−7;... b) HD :
Tính tổng :
a) \(S_n=1+2a+3a^2+....+na^{n-1}\)
b) \(S_n=1.x+2x^2+3.x^3+....+nx^n\)
Thảo luận (1)Hướng dẫn giải
Tìm m để phương trình :
\(x^4-\left(3m+5\right)x^2+\left(m+1\right)^2=0\)
có 4 nghiệm lập thành một cấp số cộng
Thảo luận (1)Hướng dẫn giải