Giải các bất phương trình sau:
a) \({2^x} > 16\);
b) \(0,{1^x} \le 0,001\);
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x}\).
Giải các bất phương trình sau:
a) \({2^x} > 16\);
b) \(0,{1^x} \le 0,001\);
c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x}\).
Biết rằng máu của người bình thường có độ pH từ 7,30 đến 7,45 (nguồn: Hoá học 11, NXB Giáo dục Việt Nam, năm 2017, trang 15). Nồng độ H+ trong máu nhận giá trị trong miền nào?
Thảo luận (1)Hướng dẫn giải\(pH = - \log x = {\log _{{{10}^{ - 1}}}}x = {\log _{\frac{1}{{10}}}}x\)
Do \(0 < \frac{1}{{10}} < 1\) nên hàm số \(pH = {\log _{\frac{1}{{10}}}}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).
Ta có:
\(\begin{array}{l}pH = 7,3 \Leftrightarrow 7,3 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,3}} \approx 5,{01.10^{ - 8}}\\pH = 7,45 \Leftrightarrow 7,45 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,45}} \approx 3,{55.10^{ - 8}}\end{array}\)
Vì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\) nên nồng độ H+ trong máu nhận giá trị trong miền từ \(3,{55.10^{ - 8}}\) đến \(5,{01.10^{ - 8}}\).
(Trả lời bởi Hà Quang Minh)
Nhắc lại rằng, độ pH của một dung dịch được tính theo công thức \(pH = - \log x\), trong đó \(x\) là nồng độ ion H+ tính bằng mol/L.
Biết sữa có độ pH là 6,5. Nồng độ H+ của sữa bằng bao nhiêu?
Thảo luận (1)Hướng dẫn giảitham khảo
Ta có:
\(pH=-logx\Leftrightarrow6,5=-logx\Leftrightarrow logx=-6,5\Leftrightarrow x=10^{-6,5}\approx3,16.10^{-77}\)
Vậy nồng độ \(H^+\) của sữa bằng \(3,16.10^{-7}\) mol/L.
(Trả lời bởi Mai Trung Hải Phong)
Xét quần thể vi khuẩn ở Hoạt động 1.
a) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000?
b) Ở những thời điểm nào thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000?
Thảo luận (1)Hướng dẫn giảiDo \(10 > 1\) nên hàm số \(P\left( t \right) = {50.10^{kt}}\) đồng biến trên \(\mathbb{R}\).
a) Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.
Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(t > 10\) thì số lượng cá thể vi khuẩn vượt quá 50000.
b) Thời gian để số lượng cá thể vi khuẩn đạt đến 100000 là:
\(100000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 2000 \Leftrightarrow 0,3t = \log 2000 \Leftrightarrow t \approx 11\) (giờ)
Tại thời điểm \(t = 10\) thì số lượng cá thể vi khuẩn bằng 50000.
Tại thời điểm \(t = 11\) thì số lượng cá thể vi khuẩn bằng 100000.
Vì hàm số đồng biến trên \(\mathbb{R}\) nên với \(10 < t < 11\) thì số lượng cá thể vi khuẩn vượt quá 50000 nhưng chưa vượt quá 100000.
(Trả lời bởi Hà Quang Minh)
Cho đồ thị của hai hàm số \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) và \(y = b\) như Hình 3a (với \(a > 1\)) hay Hình 3b (với \(0 < a < 1\)). Từ đây hãy nhận xét về số nghiệm và công thức nghiệm của phương trình \({\log _a}x = b\).
Thảo luận (1)Hướng dẫn giảitham khảo.
Đồ thị của hai hàm số \(y=\log_ax\) và \(y=b\) luôn cắt nhau tại một điểm duy nhất. Khi đó phương trình \(\log_ax=b\) có nghiệm duy nhất \(x=a^b\).
(Trả lời bởi Mai Trung Hải Phong)
Công thức tính khối lượng còn lại của một chất phóng xạ từ khối lượng ban đầu \({M_0}\) là \(M\left( t \right) = {M_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\), trong đó \(t\) là thời gian tính từ thời điểm ban đầu và \(T\) là chu kì bán rã của chất. Đồng vị plutonium-234 có chu kì bản rã là 9 giờ.
(Nguồn: https://pubchem.ncbi.nlm.nih.gov/element/Plutonium#section=Atomic- Mass-Half-Life-and-Decay)
Từ khối lượng ban đầu 200 g, sau bao lâu thì sau bao lâu thì khối lượng plutonium-234 còn lại là:
a) 100 g?
b) 50 g?
c) 20 g?
Thảo luận (1)Hướng dẫn giảia) Với \({M_0} = 200,T = 9,M\left( t \right) = 100\) ta có:
\(100 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{2} \Leftrightarrow \frac{t}{9} = 1 \Leftrightarrow t = 9\)
Vậy sau 9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 100 g.
b) Với \({M_0} = 200,T = 9,M\left( t \right) = 50\) ta có:
\(50 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{4} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = {\left( {\frac{1}{2}} \right)^2} \Leftrightarrow \frac{t}{9} = 2 \Leftrightarrow t = 18\)
Vậy sau 18 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.
c) Với \({M_0} = 200,T = 9,M\left( t \right) = 20\) ta có:
\(20 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _{\frac{1}{2}}}\frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _2}10 \Leftrightarrow t = 9{\log _2}10 \approx 29,9\)
Vậy sau 29,9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.
(Trả lời bởi Hà Quang Minh)
Cho đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) như Hình 2a (với \(a > 0\)) hay Hình 2b (với \(0 < a < 1\)). Từ đây, hãy nhận xét về số nghiệm và công thức nghiệm của phương trình \({a^x} = b\) trong hai trường hợp \(b > 0\) và \(b \le 0\).
Thảo luận (1)Hướng dẫn giảiKhi \(b > 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) cắt nhau tại một điểm duy nhất. Khi đó phương trình \({a^x} = b\) có nghiệm duy nhất \(x = {\log _a}b\).
Khi \(b \le 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) không có điểm chung. Khi đó phương trình \({a^x} = b\) vô nghiệm.
(Trả lời bởi Hà Quang Minh)
Số lượng cá thể vi khuẩn của một mẻ nuôi cấy tuân theo công thức \(P\left( t \right) = {50.10^{kt}}\), trong đó \(t\) là thời gian tính bằng giờ kể từ thời điểm bắt đầu nuôi cấy, \(k\) là hằng số.
(Nguồn: Sinh học 10, NXB Giáo dục Việt Nam, năm 2017, trang 101)
a) Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?
b) Sau 1 giờ thì mẻ có 100 cá thể vi khuẩn. Tìm giá trị của \(k\) (làm tròn kết quả đến hàng phần mười).
c) Sau bao lâu thì số lượng cá thể vi khuẩn đạt đến 50000?
Thảo luận (1)Hướng dẫn giảia) Số cá thể vi khuẩn ban đầu mẻ có là:
\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)
b) Với \(t = 1,P\left( t \right) = 100\) ta có:
\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)
c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:
\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)
(Trả lời bởi Hà Quang Minh)
Giải các phương trình sau:
a) \({3^{x + 2}} = \sqrt[3]{9}\); b) \({2.10^{2{\rm{x}}}} = 30\); c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}}\).
Thảo luận (1)Hướng dẫn giảia) \({3^{x + 2}} = \sqrt[3]{9} \Leftrightarrow {3^{x + 2}} = {9^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {\left( {{3^2}} \right)^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {3^{\frac{2}{3}}} \Leftrightarrow x + 2 = \frac{2}{3} \Leftrightarrow x = - \frac{4}{3}\)
b) \({2.10^{2{\rm{x}}}} = 30 \Leftrightarrow {10^{2{\rm{x}}}} = 15 \Leftrightarrow 2{\rm{x}} = \log 15 \Leftrightarrow x = \frac{1}{2}\log 15\)
c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}} \Leftrightarrow {\left( {{2^2}} \right)^{2{\rm{x}}}} = {\left( {{2^3}} \right)^{2{\rm{x}} - 1}} \Leftrightarrow {2^{4{\rm{x}}}} = {2^{6{\rm{x}} - 3}} \Leftrightarrow 4{\rm{x}} = 6{\rm{x}} - 3 \Leftrightarrow - 2{\rm{x}} = - 3 \Leftrightarrow x = \frac{3}{2}\).
(Trả lời bởi Hà Quang Minh)
Giải các phương trình sau:
a) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) = - 2\);
b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)
Thảo luận (1)Hướng dẫn giảia) \({\log _{\frac{1}{2}}}\left( {x - 2} \right) = - 2\)
Điều kiện: \(x - 2 > 0 \Leftrightarrow x > 2\)
Vậy phương trình có nghiệm là \(x = 6\).
b) \({\log _2}\left( {x + 6} \right) = {\log _2}\left( {x + 1} \right) + 1\)
Điều kiện: \(\left\{ \begin{array}{l}x + 6 > 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 6\\x > - 1\end{array} \right. \Leftrightarrow x > - 1\)
Vậy phương trình có nghiệm là \(x = 4\).
(Trả lời bởi Hà Quang Minh)