Hết kì gửi thứ nhất, bác Lan không rút tiền ra mà tiếp tục gửi tiết kiệm kì thứ hai với lãi suất như cũ. Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ hai theo x.
Hết kì gửi thứ nhất, bác Lan không rút tiền ra mà tiếp tục gửi tiết kiệm kì thứ hai với lãi suất như cũ. Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ hai theo x.
Xét bài toán ở tình huống mở đầu.
Gọi x là lãi suất gửi tiết kiệm của bác Lan (x được cho dưới dạng số thập phân). Hãy biểu thị số tiền thu được (cả vốn lẫn lãi) của bác Lan sau kì gửi thứ nhất theo x.
Thảo luận (1)Hướng dẫn giảiTổng số tiền cả vốn lẫn lãi thu được sau kì gửi thứ nhất là: \(100 + 100x = 100\left( {1 + x} \right)\) (triệu đồng)
(Trả lời bởi Nguyễn Quốc Đạt)
Sau hai năm, số dân của một thành phố tăng từ 1 200 000 người lên 1 452 000 người. Hỏi trung bình mỗi năm dân số của thành phố đó tăng bao nhiêu phần trăm?
Thảo luận (1)Hướng dẫn giảiGọi dân số tăng trung bình mỗi năm là x (x được cho dưới dạng số thập phân), điều kiện: \(x > 0\).
Sau năm thứ nhất, số dân của thành phố đó là:
\(1\;200\;000 + 1\;200\;000x = 1\;200\;000\left( {1 + x} \right)\) (người)
Sau năm thứ hai, số dân của thành phố đó là:
\(1\;200\;000\left( {1 + x} \right) + 1\;200\;000\left( {1 + x} \right).x = 1\;200\;000{\left( {1 + x} \right)^2}\) (người)
Vì sau hai năm, dân số của thành phố là 1 452 000 người nên ta có phương trình:
\(1\;200\;000{\left( {1 + x} \right)^2} = 1\;452\;000\)
\({\left( {1 + x} \right)^2} = 1,21\)
\(1 + x = 1,1\) (do \(x > 0\))
\(x = 0,1\) (thỏa mãn)
Vậy trung bình mỗi năm dân số của thành phố đó tăng 10%.
(Trả lời bởi Nguyễn Quốc Đạt)
Dựa vào đề bài, viết phương trình ẩn x thu được và giải phương trình này để tìm x. Từ đó, trả lời câu hỏi trong tình huống mở đầu.
Thảo luận (1)Hướng dẫn giảiVì sau hai năm bác Lan nhận được 118,81 triệu đồng nên ta có phương trình:
\(100{\left( {x + 1} \right)^2} = 118,81\)
\({\left( {x + 1} \right)^2} = 1,1881\)
\(x + 1 = 1,09\) (do \(x > 0\))
\(x = 0,09\)
Vậy lãi suất gửi tiết kiệm là 9%.
(Trả lời bởi Nguyễn Quốc Đạt)
Một mảnh đất hình chữ nhật có diện tích 360 m2. Nếu tăng chiều rộng 3 m và giảm chiều dài 4 m thì diện tích mảnh đất không đổi. Tìm các kích thước của mảnh đất đó.
Thảo luận (1)Hướng dẫn giảiGọi chiều rộng của mảnh đất là x (m), điều kiện: \(x > 0\).
Chiều dài của mảnh đất là: \(\frac{{360}}{x}\left( m \right)\).
Khi tăng chiều rộng 3m thì chiều rộng mới là: \(x + 3\left( m \right)\).
Khi giảm chiều dài đi 4m thì chiều dài mới là: \(\frac{{360}}{x} - 4\left( m \right)\).
Diện tích mới của của đất là:
\(\left( {x + 3} \right)\left( {\frac{{360}}{x} - 4} \right) = \frac{{\left( {x + 3} \right)\left( {360 - 4x} \right)}}{x}\left( {{m^2}} \right)\)
Vì tăng chiều rộng 3m và giảm chiều dài 4m thì diện tích mảnh đất không đổi nên ta có phương trình:
\(\frac{{\left( {x + 3} \right)\left( {360 - 4x} \right)}}{x} = 360\)
Nhân cả hai vế của phương trình với x, để khử mẫu ta được phương trình:
\(\left( {x + 3} \right)\left( {360 - 4x} \right) = 360x\)
\( - 4{x^2} + 348x + 1080 = 360x\), suy ra \({x^2} + 3x - 270 = 0\)
Ta có: \(\Delta = {3^2} - 4.\left( { - 270} \right) = 1089 > 0\) nên phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 3 + \sqrt {1089} }}{2} = 15\left( {tm} \right);{x_2} = \frac{{ - 3 - \sqrt {1089} }}{2} = - 18\) (loại)
Do đó, chiều rộng của mảnh đất là 15m và chiều dài của mảnh đất là: \(\frac{{360}}{{15}} = 24\left( m \right)\).
(Trả lời bởi Nguyễn Quốc Đạt)
Một thanh sô cô la có dạng hình hộp chữ nhật với chiều dài 12 cm, chiều rộng 7 cm và độ dày 3 cm. Do giá nguyên liệu ca cao tăng nhưng vẫn muốn giữ nguyên giá bán nên nhà sản xuất quyết định giảm 10% thể tích của mỗi thanh sô cô la. Để thực hiện việc này, nhà sản xuất dự định làm thanh sô cô la mới có cùng độ dày 3 cm như thanh cũ, nhưng chiều dài và chiều rộng sẽ giảm đi cùng một số centimét. Hỏi kích thước của thanh sô cô la mới là bao nhiêu (làm tròn kết quả đến hàng phần trăm của cm)?
Thảo luận (1)Hướng dẫn giảiThể tích của thanh sô cô la sau khi giảm thể tích là:
\(12.7.3.90\% = 226,8\left( {c{m^3}} \right)\).
Gọi số centimét giảm đi ở chiều dài và chiều rộng của thanh sô cô la là x (cm), điều kiện: \(0 < x < 7\).
Chiều dài của thanh sô cô la mới là \(12 - x\left( {cm} \right)\), chiều rộng của thanh sô cô la mới là \(7 - x\left( {cm} \right)\).
Thể tích của thanh sô cô la mới là:
\(3\left( {12 - x} \right)\left( {7 - x} \right)\left( {c{m^3}} \right)\).
Vì thể tích của thanh sô cô la mới là \(226,8c{m^3}\) nên ta có phương trình:
\(3\left( {12 - x} \right)\left( {7 - x} \right) = 226,8\)
\({x^2} - 19x + 84 = 75,6\)
\({x^2} - 19x + 8,4 = 0\)
Ta có: \(\Delta = {\left( { - 19} \right)^2} - 4.8,4 = 327,4 > 0\) nên phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{19 - \sqrt {327,4} }}{2} \approx 0,45 \left( {tm} \right),{x_2} = \frac{{19 + \sqrt {327,4} }}{2}\left( {ktm} \right)\)
Vậy kích thước của thanh socola mới là:
Chiều dài: \(12 - 0,45 = 11,55 (cm)\)
Chiều rộng: \(7 - 0,45 = 6,55 (cm)\)
Độ dày giữ nguyên: 3cm.
(Trả lời bởi Nguyễn Quốc Đạt)
Một ô tô khách khởi hành từ Hà Nội đi Hải Phòng. Sau đó 30 phút, một ô tô con xuất phát từ cùng địa điểm ở Hà Nội và cũng đi về Hải Phòng trên cùng tuyến đường, với vận tốc lớn hơn vận tốc của ô tô khách là 20 km/h. Hai xe đến cùng một địa điểm ở Hải Phòng tại cùng một thời điểm. Hãy tính vận tốc của mỗi ô tô, biết rằng quãng đường Hà Nội – Hải Phòng dài khoảng 120 km.
Thảo luận (1)Hướng dẫn giảiGọi vận tốc của ô tô khách là x (km/h), điều kiện: \(x > 0\).
Vận tốc của ô tô con là \(x + 20\left( {km/h} \right)\).
Thời gian ô tô khách đi quãng đường Hà Nội – Hải Phòng là: \(\frac{{120}}{x}\) (giờ)
Thời gian ô tô con đi quãng đường Hà Nội – Hải Phòng là: \(\frac{{120}}{{x + 20}}\) (giờ)
Vì xe ô tô khách xuất phát trước ô tô con 30 phút \( = \frac{1}{2}\)giờ nên ta có phương trình:
\(\frac{{120}}{{x + 20}} + \frac{1}{2} = \frac{{120}}{x}\)
Quy đồng mẫu số hai vế của phương trình ta được:
\(\frac{{240x}}{{2x\left( {x + 20} \right)}} + \frac{{x\left( {x + 20} \right)}}{{2x\left( {x + 20} \right)}} = \frac{{240\left( {x + 20} \right)}}{{2x\left( {x + 20} \right)}}\)
Nhân cả hai vế của phương trình với \(2x\left( {x + 20} \right)\) để khử mẫu ta được phương trình bậc hai:
\(240x + x\left( {x + 20} \right) = 240\left( {x + 20} \right)\)
\(240x + {x^2} + 20x = 240x + 4800\)
\({x^2} + 20x - 4800 = 0\)
Ta có: \(\Delta ' = {10^2} + 4800 = 4900 > 0 \Rightarrow \sqrt {\Delta '} = 70\), phương trình có hai nghiệm phân biệt
\({x_1} = - 10 + 70 = 60\left( {tm} \right),{x_2} = - 10 - 70 = - 80\left( {ktm} \right)\)
Vậy vận tốc của ô tô khách là 60km/h, vận tốc của ô tô con là: \(60 + 20 = 80\left( {km/h} \right)\).
(Trả lời bởi Nguyễn Quốc Đạt)
Một xưởng may phải may 1 500 chiếc áo trong thời gian quy định. Để hoàn thành sớm kế hoạch, mỗi ngày xưởng đã may được nhiều hơn 10 chiếc áo so với số áo phải may trong một ngày theo kế hoạch. Do đó, ba ngày trước khi hết thời hạn, xưởng đã may được 1 320 áo. Hỏi theo kế hoạch, mỗi ngày xưởng đó phải may xong bao nhiêu chiếc áo?
Thảo luận (1)Hướng dẫn giảiGọi số áo mỗi ngày xưởng phải may theo kế hoạch là x (chiếc), điều kiện: \(x \in \mathbb{N}*\).
Theo kế hoạch, số ngày may xong 1 500 chiếc áo là: \(\frac{{1\;500}}{x}\) (ngày).
Thực tế, mỗi ngày xưởng may số chiếc áo là: \(x + 10\) (chiếc).
Thực tế, 1 320 chiếc áo được may trong số ngày là: \(\frac{{1320}}{{x + 10}}\) (ngày)
Vì ba ngày trước khi hết thời hạn, xưởng may được 1320 áo nên ta có phương trình:
\(\frac{{1\;500}}{x} - 3 = \frac{{1320}}{{x + 10}}\)
Quy đồng mẫu số hai vế của phương trình ta được:
\(\frac{{1\;500\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} - \frac{{3x\left( {x + 10} \right)}}{{x\left( {x + 10} \right)}} = \frac{{1320x}}{{x\left( {x + 10} \right)}}\)
Nhân cả hai vế của phương trình với \(x\left( {x + 10} \right)\) để khử mẫu ta được phương trình bậc hai:
\(1500\left( {x + 10} \right) - 3x\left( {x + 10} \right) = 1320x\)
\(500x + 5000 - {x^2} - 10x = 440x\)
\({x^2} - 50x - 5000 = 0\)
Ta có: \(\Delta ' = {\left( { - 25} \right)^2} + 5000 = 5625 \Rightarrow \sqrt {\Delta '} = 75\), phương trình có hai nghiệm phân biệt:
\({x_1} = 25 + 75 = 100\left( {tm} \right);{x_2} = 25 - 75 = - 50\left( {ktm} \right)\)
Vậy theo kế hoạch, mỗi ngày xưởng đó phải may xong 100 cái áo.
(Trả lời bởi Nguyễn Quốc Đạt)
Một máy bay khởi hành từ Hà Nội vào Thành phố Hồ Chí Minh, sau đó nghỉ 96 phút và tiếp tục bay về Hà Nội với vận tốc lớn hơn vận tốc lúc đi là 100 km/h. Tổng thời gian của cả hành trình, kể từ khi xuất phát từ Hà Nội đến khi quay về Hà Nội là 6 giờ. Tính vận tốc của máy bay lúc đi, biết quãng đường bay Hà Nội – Thành phố Hồ Chí Minh dài khoảng 1 200 km.
Thảo luận (1)Hướng dẫn giảiGọi vận tốc máy bay lúc đi là x (km/h), điều kiện: \(x > 0\).
Vận tốc máy bay lúc về là: \(x + 100\left( {km/h} \right)\).
Thời gian lúc đi của máy bay là: \(\frac{{1200}}{x}\) (giờ).
Thời gian lúc về của máy bay là: \(\frac{{1200}}{{x + 100}}\) (giờ).
Vì máy bay nghỉ 96 phút\( = \frac{8}{5}\) giờ và tổng thời gian của cả hành trình, kể cả từ khi xuất phát từ Hà Nội đến khi quay về Hà Nội là 6 giờ nên ta có phương trình:
\(\frac{{1200}}{x} + \frac{8}{5} + \frac{{1200}}{{x + 100}} = 6\)
\(\frac{{1200}}{x} + \frac{{1200}}{{x + 100}} = \frac{{22}}{5}\)
Quy đồng mẫu số hai vế của phương trình ta được:
\(\frac{{6000\left( {x + 100} \right)}}{{5x\left( {x + 100} \right)}} + \frac{{6000x}}{{5x\left( {x + 100} \right)}} = \frac{{22x\left( {x + 100} \right)}}{{5x\left( {x + 100} \right)}}\)
Nhân cả hai vế của phương trình với \(5x\left( {x + 100} \right)\) để khử mẫu ta được phương trình bậc hai:
\(6000\left( {x + 100} \right) + 6000x = 22x\left( {x + 100} \right)\)
\(3000x + 300\;000 + 3000x = 11{x^2} + 1100x\)
\(11{x^2} - 4900x - 300\;000 = 0\)
Ta có:
\(\Delta ' = {\left( { - 2450} \right)^2} - 11.\left( { - 300\;000} \right) = 9\;302\;500 \Rightarrow \sqrt {\Delta '} = 3050\)
Phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{2450 - 3050}}{{11}} = \frac{{ - 600}}{{11}}\left( {ktm} \right);{x_2} = \frac{{2450 + 3050}}{{11}} = 500\)(tm)
Vậy vận tốc lúc đi của máy bay là \(500km/h\).
(Trả lời bởi Nguyễn Quốc Đạt)
Một đội xe gồm các xe tải cùng loại, cần phải chở 120 tấn hàng. Tuy nhiên khi làm việc, có hai xe phải điều chuyển đi nơi khác nên mỗi xe phải chở thêm 3 tấn hàng. Hỏi đội xe đó có bao nhiêu chiếc xe tải?
Thảo luận (1)Hướng dẫn giảiGọi số chiếc xe tải của đội xe là x (chiếc), điều kiện: \(x \in \mathbb{N}*,x > 2\).
Khi đó, mỗi xe cần phải chở \(\frac{{120}}{x}\) (tấn hàng).
Khi làm việc, số xe dùng để chở hàng là: \(x - 2\) (chiếc)
Khi làm việc, mỗi xe cần chở \(\frac{{120}}{{x - 2}}\) (tấn hàng)
Vì mỗi chiếc xe phải chở thêm 3 tấn hàng nên ta có phương trình:
\(\frac{{120}}{{x - 2}} - 3 = \frac{{120}}{x}\)
Quy đồng hai vế của phương trình ta được:
\(\frac{{120x}}{{x\left( {x - 2} \right)}} - \frac{{3x\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}} = \frac{{120\left( {x - 2} \right)}}{{x\left( {x - 2} \right)}}\)
Nhân cả hai vế của phương trình với \(x\left( {x - 2} \right)\) để khử mẫu ta được phương trình bậc hai:
\(120x - 3x\left( {x - 2} \right) = 120\left( {x - 2} \right)\)
\(120x - 3{x^2} + 6x = 120x - 240\)
\(3{x^2} - 6x - 240 = 0\)
\({x^2} - 2x - 80 = 0\)
Ta có: \(\Delta ' = {\left( { - 1} \right)^2} + 80 = 81 > 0\) nên phương trình có hai nghiệm phân biệt
\({x_1} = 1 + 9 = 10\left( {tm} \right)\); \({x_2} = 1 - 9 = - 8\) (loại)
Vậy đội xe có 10 chiếc xe tải.
(Trả lời bởi Nguyễn Quốc Đạt)