Viết phương trình của đường tròn (C) trong mỗi trường hợp sau:
a) Có tâm I(-2; 5) và bán kính R= 7;
b) Có tâm I(1;-2) và đi qua điểm A(-2, 2);
c) Có đường kính AB, với A(-1; -3), B(-3; 5);
d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x+2y +3 = 0.
Viết phương trình của đường tròn (C) trong mỗi trường hợp sau:
a) Có tâm I(-2; 5) và bán kính R= 7;
b) Có tâm I(1;-2) và đi qua điểm A(-2, 2);
c) Có đường kính AB, với A(-1; -3), B(-3; 5);
d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x+2y +3 = 0.
Trong mặt phẳng toạ độ, cho tam giác ABC, với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó.
Thảo luận (1)Hướng dẫn giảiGiả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {6 - a} \right)^2} + {\left( { - 2 - b} \right)^2} = {\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(I\left( {1; - 2} \right)\) và \(R = IA = \sqrt {{{\left( {1 - 6} \right)}^2} + {{\left( { - 2 + 2} \right)}^2}} = 5\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
Cách 2:
Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)
\(A(6; -2), B(4; 2), C(5; -5)\) thuộc (C) nên ta có:
\(\left\{ {\begin{array}{*{20}{l}}
{36 + 4 + 12a - 4b + c = 0}\\
{16 + 4 + 8a + 4b + c = 0}\\
{25 + 25 + 10a - 10b + c = 0}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{12a - 4b + c = - 40}\\
{8a + 4b + c = - 20}\\
{10a - 10b + c = - 50}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{a = - 1}\\
{b = 2} \,\rm{(thỏa mãn)}\\
{c = - 20}
\end{array}} \right.\)Vậy phương trình đường tròn đi qua 3 điểm A, B, C là: \({x^2} + {y^2} - 2x + 4y -20 = 0\) hay \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
(Trả lời bởi Hà Quang Minh)
Cho đường tròn\((C):{x^2} + {y^2} + 2x - 4y + 4 = 0\) . Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).
Thảo luận (1)Hướng dẫn giảiĐường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\). Đường thẳng \(d\) đi qua điểm \(M\left( {0;2} \right)\) nhận \(\overrightarrow {IM} = \left( {1;0} \right)\) làm vecto pháp tuyến có phương trình là \(x = 0\).
(Trả lời bởi Hà Quang Minh)
Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng toạ độ. Theo đó, tại thời điểm t (\[0{\rm{ }} \le t \le 180\] ) vật thể ở vị trí có toạ độ\[\left( {2{\rm{ }} + {\rm{ }}sin{t^o};{\rm{ }}4{\rm{ }} + {\rm{ }}cos{t^o}} \right)\].
a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.
b) Tìm quỹ đạo chuyển động của vật thể.
Thảo luận (1)Hướng dẫn giảia) Vị trí ban đầu ứng với \(t = 0\), suy ra vật thể ở vị trí có tọa độ là \(A\left( {2;5} \right)\).
Vị trí kết thúc ứng với \(t = 180\) , suy ra vật thể ở vị trí có tọa độ là \(B\left( {2;3} \right)\).
b) Từ đẳng thức \({\left( {\sin {t^o}} \right)^2} + {\left( {\cos {t^o}} \right)^2} = 1\) ta suy ra \({\left( {{x_M} - 2} \right)^2} + {\left( {{y_M} - 4} \right)^2} = 1\)
Do đó, M thuộc đường tròn \(\left( C \right)\) có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} = 1\)
Đường tròn có tâm \(I\left( {2;4} \right)\), bán kính \(R = 1\) và nhận AB làm đường kính.
Khi \(t \in \left[ {0;180} \right]\) thì \(\sin t \in \left[ {0;1} \right]\) và \(\cos t \in \left[ { - 1;1} \right]\). Do đó, \(2 + \sin {t^o} \in \left[ {2;3} \right]\) và \(4 + \cos {t^o} \in \left[ {3;5} \right]\).
Vậy quỹ đạo của vật thể là nửa đường tròn đường kính AB vẽ trên nửa mặt phẳng chứa điểm \(C\left( {3;0} \right)\) bờ AB.
(Trả lời bởi Hà Quang Minh)