Tính: \({\left( {x - y} \right)^2}\)
Tính: \({\left( {x - y} \right)^2}\)
Tính tích: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2}\).
Thảo luận (1)Hướng dẫn giảiTa có: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2} = \left( {9.2} \right).\left( {{x^5}.{x^4}} \right).\left( {{y^4}.{y^2}} \right) = 18{{\rm{x}}^9}{y^6}\)
(Trả lời bởi Hà Quang Minh)
Cho: \(P = \left( {21{{\rm{x}}^4}{y^5}} \right):\left( {7{{\rm{x}}^3}{y^3}} \right)\). Tính giá trị của biểu thức P tại x = -0,5; y = 2.
Thảo luận (1)Hướng dẫn giảiTa có: \(P = \left( {21{{\rm{x}}^4}{y^5}} \right):\left( {7{{\rm{x}}^3}{y^3}} \right) = \left( {21:7} \right).\left( {{x^4}:{x^3}} \right).\left( {{y^5}:{y^3}} \right) = 3{\rm{x}}{y^2}\)
Thay x = -0,5; y = 2 vào biểu thức \(P = 3{\rm{x}}{y^2}\) ta được:
\(P = 3.\left( { - 0,5} \right){.2^2} = - 6\)
Vậy P = -6 tại x = -0,5; y = 2
(Trả lời bởi Hà Quang Minh)
Tính tích: \(\left( {3{\rm{x}}y} \right)\left( {x + y} \right)\)
Thảo luận (1)Hướng dẫn giảiTa có: \(\left( {3{\rm{x}}y} \right)\left( {x + y} \right) = 3{\rm{x}}y.x + 3{\rm{x}}y.y = 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2}\)
(Trả lời bởi Hà Quang Minh)
Tìm thương của phép chia đa thức\(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}\) cho đơn thức \(3{{\rm{x}}^3}{y^3}\)
Thảo luận (1)Hướng dẫn giảiTa có:
\(\begin{array}{l}(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}):(3{{\rm{x}}^3}{y^3})\\ = (12{{\rm{x}}^3}{y^3}):\left( {3{{\rm{x}}^3}{y^3}} \right) + \left( { - 6{{\rm{x}}^4}{y^3}} \right):\left( {3{{\rm{x}}^3}{y^3}} \right) + \left( {21{{\rm{x}}^3}{y^4}} \right):\left( {3{{\rm{x}}^3}{y^3}} \right)\\ = 4 - 2{\rm{x}} + 7y\end{array}\)
Thương của phép chia đa thức\(12{{\rm{x}}^3}{y^3} - 6{{\rm{x}}^4}{y^3} + 21{{\rm{x}}^3}{y^4}\) cho đơn thức \(3{{\rm{x}}^3}{y^3}\) là 4 – 2x +7y
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
a) \(\left( { - xy} \right)\left( { - 2{{\rm{x}}^2}y + 3{\rm{x}}y - 7{\rm{x}}} \right)\) b) \(\left( {\dfrac{1}{6}{x^2}{y^2}} \right)\left( { - 0,3{{\rm{x}}^2}y - 0,4{\rm{x}}y + 1} \right)\)
c) \(\left( {x + y} \right)\left( {{x^2} + 2{\rm{x}}y + {y^2}} \right)\) d) \(\left( {x - y} \right)\left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)
Thảo luận (2)Hướng dẫn giảia)
\(\begin{array}{l}\left( { - xy} \right)\left( { - 2{{\rm{x}}^2}y + 3{\rm{x}}y - 7{\rm{x}}} \right)\\ = \left( { - xy} \right).\left( { - 2{{\rm{x}}^2}y} \right) + \left( { - xy} \right)\left( {3{\rm{x}}y} \right) + \left( { - xy} \right).\left( { - 7{\rm{x}}} \right)\\ = 2{{\rm{x}}^3}{y^2} - 3{{\rm{x}}^2}{y^2} + 7{{\rm{x}}^2}y\end{array}\)
b)
\(\begin{array}{l}\left( {\dfrac{1}{6}{x^2}{y^2}} \right)\left( { - 0,3{{\rm{x}}^2}y - 0,4{\rm{x}}y + 1} \right)\\ = \left( {\dfrac{1}{6}{x^2}{y^2}} \right).\left( { - 0,3{{\rm{x}}^2}y} \right) + \left( {\dfrac{1}{6}{x^2}{y^2}} \right).\left( { - 0,4{\rm{x}}y} \right) + \left( {\dfrac{1}{6}{x^2}{y^2}} \right).1\\ = - \dfrac{1}{{20}}{x^4}{y^3} - \dfrac{1}{{15}}{x^3}{y^3} + \dfrac{1}{6}{x^2}{y^2}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
a) \(\left( {39{{\rm{x}}^5}{y^7}} \right):\left( {13{{\rm{x}}^2}y} \right)\)
b) \(\left( {{x^2}{y^2} + \dfrac{1}{6}{x^3}{y^2} - {x^5}{y^4}} \right):\left( {\dfrac{1}{2}x{y^2}} \right)\)
Thảo luận (1)Hướng dẫn giảia)
\(\left( {39{{\rm{x}}^5}{y^7}} \right):\left( {13{{\rm{x}}^2}y} \right) = \left( {39:13} \right).\left( {{x^5}:{x^2}} \right).\left( {{y^7}:y} \right) = 3{{\rm{x}}^3}{y^6}\)
b)
\(\begin{array}{l}\left( {{x^2}{y^2} + \dfrac{1}{6}{x^3}{y^2} - {x^5}{y^4}} \right):\left( {\dfrac{1}{2}x{y^2}} \right)\\ = \left( {{x^2}{y^2}} \right):\left( {\dfrac{1}{2}x{y^2}} \right) + \left( {\dfrac{1}{6}{x^3}{y^2}} \right):\left( {\dfrac{1}{2}x{y^2}} \right) + \left( { - {x^5}{y^4}} \right):\left( {\dfrac{1}{2}x{y^2}} \right)\\ = 2{\rm{x}} + \dfrac{1}{3}x^2 - 2{{\rm{x}}^4}{y^2}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Rút gọn biểu thức:
\(a)\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\)
b) \(\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)
c) \(\left( {4{\rm{x}} - 1} \right)\left( {6y + 1} \right) - 3{\rm{x}}\left( {8y + \dfrac{4}{3}} \right)\)
d) \(\left( {x + y} \right)\left( {x - y} \right) + \left( {x{y^4} - {x^3}{y^2}} \right):\left( {x{y^2}} \right)\)
Thảo luận (2)Hướng dẫn giảia)
\(\begin{array}{l}\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\\ = x.{x^2} + x.xy + x.{y^2} - y.{x^2} - y.xy - y.{y^2}\\ = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {y^3}\\ = {x^3} - {y^3}\end{array}\)
b)
\(\begin{array}{l}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\\ = x.{x^2} + x.\left( { - xy} \right) + x{y^2} + y.{x^2} + y.\left( { - xy} \right) + y.{y^2}\\ = {x^3} - {x^2}y + x{y^2} + {x^2}y - x{y^2} + {y^3}\\ = {x^3} + {y^3}\end{array}\)
(Trả lời bởi Hà Quang Minh)
a) Rút gọn rồi tính giá trị biểu thức:
\(P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\) khi x = 1,2 và x + y = 6,2
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến a:
\(\left( {{x^2} - 5{\rm{x}} + 4} \right)\left( {2{\rm{x}} + 3} \right) - \left( {2{{\rm{x}}^2} - x - 10} \right)\left( {x - 3} \right)\)
Thảo luận (2)Hướng dẫn giảia) Vì x = 1,2 và x + y = 6,2 nên \(y = 6,2 - x = 6,2 - 1,2 = 5\)
\(\begin{array}{l}P = \left( {5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2}} \right) - \left( {{x^2} + {y^2}} \right) - \left( {4{{\rm{x}}^2} - 5{\rm{x}}y + 1} \right)\\P = 5{{\rm{x}}^2} - 2{\rm{x}}y + {y^2} - {x^2} - {y^2} - 4{{\rm{x}}^2} + 5{\rm{x}}y - 1\\P = \left( {5{{\rm{x}}^2} - {x^2} - 4{{\rm{x}}^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 2{\rm{x}}y + 5{\rm{x}}y} \right)\\P = 3{\rm{x}}y - 1 \end{array}\)
Thay x = 1,2; y = 5 vào biểu thức P = 3xy - 1 ta được
\(P = 3.1,2.5 - 1 = 17\)
Vậy P = 17
(Trả lời bởi Hà Quang Minh)
a) Chứng minh rằng biểu thức \(P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\) luôn nhận giá trị âm với mọi giá trị của biến x.
b) Chứng minh rằng biểu thức \(Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\) luôn nhận giá trị dương với mọi giá trị của biến x và y
Thảo luận (1)Hướng dẫn giảia) Ta có:
\(\begin{array}{l}P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\\P = 5{\rm{x}}.2 - 5{\rm{x}}.x - x.x - x.9 - 1.x - 1.9\\P = 10{\rm{x}} - 5{{\rm{x}}^2} - {x^2} - 9{\rm{x}} - x - 9\\P = - \left( {6{{\rm{x}}^2} + 9} \right)\end{array}\)
Vì \(6{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \(6{{\rm{x}}^2} + 9 \ge 9,\forall x \in \mathbb{R}\) suy ra \( - \left( {6{{\rm{x}}^2} + 9} \right) \le - 9 < 0,\forall x \in \mathbb{R}\)
Vậy P luôn nhận giá trị âm với mọi giá trị của biến x.
b) Ta có:
\(\begin{array}{l}Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + x.x - x.4y - 2{\rm{x}}.6 - 2{\rm{x}}.\left( { - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + {x^2} - 4{\rm{xy}} - 12{\rm{x}} + 4{\rm{xy + 12x + 1}}\\{\rm{Q = 4}}{{\rm{x}}^2} + 1\end{array}\)
Vì \({\rm{4}}{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \({\rm{4}}{{\rm{x}}^2} + 1 \ge 1 > 0,\forall x \in \mathbb{R}\)
Vậy Q luôn nhận giá trị dương với mọi giá trị của x, y.
(Trả lời bởi Hà Quang Minh)