Tìm các điểm cực trị của hàm số y = f(x) có đồ thị cho ở Hình 8.

Tìm các điểm cực trị của hàm số y = f(x) có đồ thị cho ở Hình 8.

Quan sát đồ thị của hàm số y = f(x) = x3 – 3x2 + 1 trong Hình 5.
a) Tìm khoảng (a; b) chứa điểm x = 0 mà trên đó f(x) < f(0) với mọi x ≠ 0.
b) Tìm khoảng (a; b) chứa điểm x = 2 mà trên đó f(x) > f(2) với mọi x ≠ 2.
c) Tồn tại hay không khoảng (a; b) chứa điểm x = 1 mà trên đó f(x) > f(1) với mọi x ≠ 1 hoặc f(x) < f(1) với mọi x ≠ 1.

Thảo luận (1)Hướng dẫn giảia) Trên khoảng (-1; 2), f(x) < f(0) với mọi \(x \ne 0\)
b) Trên khoảng (0; 3), f(x) > f(2) với mọi \(x \ne 2\)
c) Không tồn tại khoảng (a; b) chứa điểm x = 1 mà trên đó f(x) > f(1) với mọi \(x \ne 1\) hoặc f(x) < f(1) với mọi \(x \ne 1\)
(Trả lời bởi Nguyễn Quốc Đạt)
Hãy trả lời câu hỏi trong phần khởi động (trang 6) bằng cách xét dấu đạo hàm của hàm số h(t) = 6t3 – 81t2 + 324t với 0 ≤ t ≤ 8.
Thảo luận (1)Hướng dẫn giải\(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\)
Tập xác định: \(D = \mathbb{R}\)
\(h'(t) = 18{t^2} - 162t + 324\)
\(h'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = 6\end{array} \right.\)
Bảng biến thiên:
Trong thời gian từ lúc xuất phát đến thời điểm 3 phút, độ cao của khinh khí cầu tăng dần từ 0m lên 405m
Độ cao của khinh khí cầu tăng dần từ 0m lên 405m trong thời gian từ lúc xuất phát đến thời điểm 3 phút, từ 324m lên 480m trong thời gian từ 6 phút đến 8 phút
Độ cao của khinh khí cầu giảm dần từ 405m xuống 324m trong thời gian từ 3 phút đến 6 phút
(Trả lời bởi Nguyễn Quốc Đạt)
Chứng minh rằng hàm số f(x) = 3x – sinx đồng biến trên ℝ.
Thảo luận (1)Hướng dẫn giảiTập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3 - \cos x\)
Ta có: \( - 1 \le \cos x \le 1\) nên \(2 \le 3 - \cos x \le 4\). Vì vậy \(f'(x) > 0\forall x \in \mathbb{R}\)
=> Hàm số \(f\left( x \right){\rm{ }} = {\rm{ }}3x{\rm{ }} - {\rm{ }}sinx\) đồng biến trên \(\mathbb{R}\)
(Trả lời bởi Nguyễn Quốc Đạt)
Xét tính đơn điệu của các hàm số sau:
a) f(x) = x3 – 6x2 + 9x; b) g(x) = \(\dfrac{1}{x}\).
Thảo luận (1)Hướng dẫn giảia) \(f(x) = {x^3} - 6{x^2} + 9x\)
Tập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3{x^2} - 12x + 9\)
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)
Bảng biến thiên:
Vậy hàm số \(f(x) = {x^3} - 6{x^2} + 9x\) đồng biến trên các khoảng (\( - \infty \); 1) và (3; \( + \infty \)), nghịch biến trên khoảng (1; 3)
b) \(g(x) = \frac{1}{x}\)
Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)
\(g'(x) = - \frac{1}{{{x^2}}}\)
Vì \({x^2} > 0\forall x \in \mathbb{R}\backslash \{ 0\} \) nên \(g'(x) < 0\forall x \in \mathbb{R}\backslash \{ 0\} \)
Bảng biến thiên:
Vậy hàm số \(g(x) = \frac{1}{x}\) nghịch biến trên các khoảng (\( - \infty \); 0) và (0; \( + \infty \))
(Trả lời bởi Nguyễn Quốc Đạt)
Cho hàm số y = f(x) = x2.
a) Từ đồ thị của hàm số y = f(x) (Hình 4), hãy chỉ ra các khoảng đồng biến và nghịch biến của hàm số đã cho.
b) Tính đạo hàm f'(x) và xét dấu f'(x).
c) Từ đó, nhận xét về mối liên hệ giữa các khoảng đồng biến, nghịch biến của hàm số với dấu của f'(x).

Thảo luận (1)Hướng dẫn giảia) Hàm số đồng biến trên khoảng (0; \( + \infty \))
Hàm số nghịch biến trên khoảng (\( - \infty \); 0)
b) f '(x) = (\({x^2}\))' = 2x
Ta có:
f '(x) > 0 \( \Leftrightarrow 2x > 0 \Leftrightarrow x > 0\)
f '(x) < 0 \( \Leftrightarrow 2x < 0 \Leftrightarrow x < 0\)
c) Nhận xét:
f’(x) > 0 trên K thì y = f(x) đồng biến trên K
f’(x) < 0 trên K thì y = f(x) nghịch biến trên K
(Trả lời bởi Nguyễn Quốc Đạt)
Tìm các khoảng đơn điệu của hàm số y = f(x) có đồ thị cho ở Hình 3.

Thảo luận (1)Hướng dẫn giảiHàm số đồng biến trên các khoảng (−3; -2) và (-1; 0)
Hàm số nghịch biến trên khoảng (-2; -1) và (0; 1)
(Trả lời bởi Nguyễn Quốc Đạt)
Trong 8 phút đầu kể từ khi xuất phát, độ cao h (tính bằng mét) của khinh khí cầu vào thời điểm t phút được cho bởi công thức h(t) = 6t3 – 81t2 + 324t. Đồ thị của hàm số h(t) được biểu diễn trong hình bên. Trong các khoảng thời gian nào thì khinh khí cầu tăng dần độ cao, giảm dần độ cao? Độ cao của khinh khí cầu vào các thời điểm 3 phút và 6 phút sau khi xuất phát có gì đặc biệt?
