Bài 1: Tính đơn diệu và cực trị của hàm số

Vận dụng 2 (SGK Chân trời sáng tạo - Tập 1 - Trang 12)

Hướng dẫn giải

Tập xác định: \(D = [0;2000]\)

\(h'(x) =  - \frac{1}{{440000}}{x^2} + \frac{9}{{1760}}x - \frac{{81}}{{44}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1800\\x = 450\end{array} \right.\)

Bảng biến thiên:

Vậy trên đoạn [0; 2000]:

Tọa độ đỉnh cực tiểu của dãy núi là (450; 460,3125)

Tọa độ đỉnh cực đại của dãy núi là (1800; 1392,27)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 1 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

a) Hàm số đồng biến trên khoảng (0;2) và (4;5), nghịch biến trên khoảng (-1;0) và (2;4)

Hàm số đạt cực đại tại x = 2, \({y_{cd}} = f(2) = 2\), đạt cực tiểu tại x = 0, \({y_{ct}} = f(0) =  - 1\) và x = 4, \({y_{ct}} = f(4) =  - 1\)

b) Hàm số đồng biến trên khoảng (-3;-1) và (1;3), nghịch biến trên khoảng (-1;1)

Hàm số đạt cực đại tại x = -1, \({y_{cd}} = f( - 1) = 3\), đạt cực tiểu tại x = 1, \({y_{ct}} = f(1) =  - 1\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

a) Tập xác định: $D=\mathbb{R}$.

Ta có $y^{\prime}=12 x^2+6 x-36 ; y^{\prime}=0 \Leftrightarrow 12 x^2+6 x-36=0 \Leftrightarrow x=-2$ hoặc $x=\frac{3}{2}$.
Bảng biến thiên


Dựa vào bảng biến thiên, ta có:
Hàm số đồng biến trên các khoảng $(-\infty ;-2)$ và $\left(\frac{3}{2} ;+\infty\right)$.
Hàm số nghịch biến trên khoảng $\left(-2 ; \frac{3}{2}\right)$
Hàm số đạt cực đại tại $x=-2$ và $\mathrm{y}_{\mathrm{CĐ}}=58$.
Hàm số đạt cực tiểu tại $x=\frac{3}{2}$ và $y_{C T}=-\frac{111}{4}$
b) Tập xác định: $\mathrm{D}=\mathbb{R} \backslash\{4\}$.

Có $y^{\prime}=\frac{(2 x-2)(x-4)-\left(x^2-2 x-7\right)}{(x-4)^2}=\frac{x^2-8 x+15}{(x-4)^2}$
Có $y^{\prime}=0 \Leftrightarrow x^2-8 x+15=0 \Leftrightarrow x=3$ hoặc $x=5$.
Bảng biến thiên


Dựa vào bảng biến thiên ta có:
Hàm số đồng biến trên các khoảng $(-\infty ; 3)$ và $(5 ;+\infty)$.
Hàm số nghịch biến trên các khoảng $(3 ; 4)$ và $(4 ; 5)$.
Hàm số đạt cực đại tại $x=3$ và $\mathrm{y}_{\mathrm{CD}}=4$.
Hàm số đạt cực tiểu tại $x=5$ và $\mathrm{y}_{\mathrm{CT}}=8$.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

a) \(y = 2{x^3} + 3{x^2}--36x + 1\)

Tập xác định: \(D = \mathbb{R}\)

\(y' = 6{x^2} + 6x - 36\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 3\end{array} \right.\)

Bảng biến thiên:

Hàm số đạt cực đại tại x = -3, \({y_{cd}} = f( - 3) = 82\), đạt cực tiểu tại x = 2, \({y_{ct}} = f(2) =  - 43\)

b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 2\} \)

\(y' = \frac{{{x^2} - 4x + 6}}{{{{(x - 2)}^2}}}\)

Ta có: \(\left\{ \begin{array}{l}({x^2} - 4x + 6) > 0\forall x \in \mathbb{R}\backslash \{ 2\} \\{(x - 2)^2} > 0\forall x \in \mathbb{R}\backslash \{ 2\} \end{array} \right.\) nên \(y' > 0\forall x \in \mathbb{R}\backslash \{ 2\} \)

Bảng biến thiên:

Vậy hàm số không có điểm cực trị

c) \(y = \sqrt { - {x^2} + 4} \)

Tập xác định: \(D = \left( { - 2;2} \right)\)

\(y' = \frac{{ - x}}{{\sqrt { - {x^2} + 4} }}\)

\(y' = 0 \Leftrightarrow x = 0\)

Bảng biến thiên:

Hàm số đạt cực đại tại x = 0, \({y_{cd}} = f(0) = 2\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

Tập xác định: \(D = \mathbb{R}\backslash \{ 3\} \)

\(y' = \frac{{ - 7}}{{{{(x - 3)}^2}}}\)

Ta có: \({(x - 3)^2} > 0\forall x \in \mathbb{R}\backslash \{ 3\} \) nên \(y' < 0\forall x \in \mathbb{R}\backslash \{ 3\} \)

Vậy hàm số \(y = \frac{{2x + 1}}{{x - 3}}\) nghịch biến trên \(\mathbb{R}\backslash \{ 3\} \)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 5 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

a) \(y' = f'(x) = 0,03{x^2} - 0,08x + 0,25\).

b) Tập xác định: \(D = [0;7]\).

Ta có: \(y' = f'(x) > 0\forall x \in \mathbb{R}\) nên \(y = f(x)\) luôn đồng biến \(\forall x \in [0;7]\).

Hàm f(x) đồng biến trên [0;7] nên giá trị của f(x) tăng dần trên [0;7].

Vậy kim ngạch xuất khẩu rau quả của Việt Nam tăng liên tục trong các năm từ 2010 đến 2017.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

a) \(v(t) = x'(t) = 3{t^2} - 12t + 9\)

\(a(t) = v'(t) = 6t - 12\)

b) Tập xác định: \(D = [0; + \infty ]\)

\(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Vậy trong khoảng từ t = 0 đến t = 2 thì vận tốc của chất điểm giảm, từ t = 2 trở đi thì vận tốc của chất điểm tăng

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 7 (SGK Chân trời sáng tạo - Tập 1 - Trang 13)

Hướng dẫn giải

f’(x) > 0 trên các khoảng (-1;2) và (4;5) nên f’(x) đồng biến trên các khoảng (-1;2) và (4;5).

f’(x) < 0 trên các khoảng (-2;-1) và (2;4) nên f’(x) nghịch biến trên các khoảng (-2;-1) và (2;4).

Ta có:

\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 2\\x = 4\end{array} \right.\)

Vậy f(x) đạt cực tiểu tại x = -1 và x = 4 do f’(x) đổi dấu từ âm sang dương khi đi qua x = -1 và x = 4, đạt cực đại tại x = 2 do f’(x) đổi dấu từ dương sang âm khi đi qua x = 2.

(Trả lời bởi datcoder)
Thảo luận (1)