Bài 1. Tỉ lệ thức - Dãy tỉ số bằng nhau

Bài 1 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

 \(7 : 21 = \dfrac{7}{{21}} = \dfrac{1}{3}\);

\(\dfrac{1}{5}:\dfrac{1}{2} = \dfrac{1}{5} .\dfrac{2}{1} = \dfrac{2}{5}\);

\(\dfrac{1}{4}:\dfrac{3}{4} = \dfrac{1}{4}.\dfrac{4}{3} = \dfrac{1}{3}\);

\( 1,1 : 3,2 = \dfrac{{1,1}}{{3,2}}=\dfrac{11}{32}\);

 \(1 : 2,5 =\dfrac{1}{{2,5}}=\dfrac{10}{25}=\dfrac{2}{5}\).

Ta thấy có các tỉ số bằng nhau là :

+) \(\dfrac{1}{4}:\dfrac{3}{4}\) và \(7 : 21\) (vì cùng bằng \(\dfrac{1}{3}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{4}:\dfrac{3}{4} = 7:21\).

+) \(\dfrac{1}{5}:\dfrac{1}{2}\) và \(1 : 2,5\) (vì cùng bằng \(\dfrac{2}{5}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{5}:\dfrac{1}{2} = 1 : 2,5\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 5 (SGK Chân trời sáng tạo trang 7-9)

Hướng dẫn giải

Từ dãy x : y : z = 2 : 3 : 5 ta có : \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\)

Mà theo đề bài x + y + z = 100

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}=\dfrac{{x + y + z}}{{2 + 3 + 5}} = \dfrac{{100}}{{10}} = 10\)

\( \Rightarrow \) 10 \( = \dfrac{x}{2}\)\( \Rightarrow \) x = 10.2 = 20  

\( \Rightarrow \) 10 \( = \dfrac{y}{3}\) \( \Rightarrow \) y = 10.3 = 30

\( \Rightarrow \) 10 \( = \dfrac{z}{5}\) \( \Rightarrow \) z = 10.5 = 50    

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Chân trời sáng tạo trang 7-9)

Hướng dẫn giải

Tỉ số giữa số bài làm được và số hình dán được thưởng của bạn Bình là : \(\dfrac{3}{6} = \dfrac{1}{2}\)

Tỉ số giữa số bài làm được và số hình dán được thưởng của bạn Mai là : \(\dfrac{3}{6} = \dfrac{1}{2}\)

Tỉ số giữa số bài làm được và số hình dán được thưởng của bạn Lan là : \(\dfrac{5}{{10}} = \dfrac{1}{2}\)

Sau khi rút gọn ta thấy tỉ số giữa số bài làm được và hình dán được thưởng của mỗi bạn đều bằng nhau và cùng bằng \(\dfrac{1}{2}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

a)      Ta có \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55

Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{x + y}}{{4 + 7}} = \dfrac{{55}}{{11}} = 5\)

\( \Rightarrow \dfrac{x}{4} = 5 \Rightarrow x = 20\)

\( \dfrac{y}{7} = 5 \Rightarrow y = 35\)

Vậy x = 20; y = 35

b)      \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35

Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{8} = \dfrac{y}{3} = \dfrac{{x - y}}{{8 - 3}} = \dfrac{{35}}{5} = 7\)

\( \Rightarrow \dfrac{x}{8} = 7\) \( \Rightarrow \) x = 56

Mà x – y = 35 \( \Rightarrow \) y = 56 – 35 = 21

Vậy x = 56 ; y = 21

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Chân trời sáng tạo trang 6)

Hướng dẫn giải

a)      \(\dfrac{{48}}{{64}} = \dfrac{9}{{12}}\)ta nhân cả 2 vế cho 64.12 được : \(\dfrac{{48}}{{64}}.(64.12) = \dfrac{9}{{12}}.(64.12)\)

\( \Rightarrow \)\(\dfrac{{48.64.12}}{{64}} = \dfrac{{9.64.12}}{{12}}\)\( \Rightarrow \)\(48.12\)= \(9.64\) \( \Leftrightarrow \) 576 = 48.12 = 9.64

\( \Rightarrow \) Ta thấy nhân cả 2 vế với 64.12 ta được 2 vế sau khi rút gọn bằng nhau

b)      \(\dfrac{a}{b} = \dfrac{c}{d}\) nhân cả 2 vế với b.d ta có : \(\dfrac{{a \cdot b \cdot d}}{b} = \dfrac{{c \cdot b.d}}{d}\) sau khi rút gọn cả 2 vế ta được : a.b = c.d

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 3 (SGK Chân trời sáng tạo trang 7-9)

Hướng dẫn giải

Tỉ số giữa số quyển vở và số điểm 10 của bạn Mai là : \(\dfrac{m}{{12}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Ngọc là : \(\dfrac{n}{{13}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Phú là : \(\dfrac{p}{{14}}\)

Tỉ số giữa số quyển vở và số điểm 10 của bạn Quang là : \(\dfrac{q}{{15}}\)

Từ các tỉ số trên ta lập được dãy tỉ số bằng nhau : \(\dfrac{m}{{12}} = \dfrac{n}{{13}} = \dfrac{p}{{14}} = \dfrac{q}{{15}}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Chân trời sáng tạo trang 6)

Hướng dẫn giải

Tỉ số giữa chiều rộng và chiều dài của màn hình thứ nhất: \(\dfrac{227,6}{324}\)
Tỉ số giữa chiều rộng và chiều dài của màn hình thứ hai: \(\dfrac{170,7}{243}\)
#kễnh

(Trả lời bởi Sahara)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo trang 6)

Hướng dẫn giải

Xét tỉ số giữa chiều dài và chiều rộng của máy tính thứ nhất là : \(\dfrac{{227,6}}{{324}}\)

Tỉ số giữa chiều dài và chiều rộng của máy tính thứ hai là : \(\dfrac{{170,7}}{{243}}\)

Để 2 tỉ số bằng nhau \( \Leftrightarrow \) \(\dfrac{{227,6}}{{324}}\)-\(\dfrac{{170,7}}{{243}}\)= 0

Ta thấy ước chung lớn nhất của 324 và 243 là 81 nên ta sẽ chia cả tử và mẫu của 2 phân số để mẫu số chung là 81

\(\begin{array}{l} \Rightarrow \dfrac{{227,6:4}}{{324:4}} - \dfrac{{170,7:3}}{{243:3}} = 0\\ \Leftrightarrow \dfrac{{56,9}}{{81}} - \dfrac{{56,9}}{{81}} = 0\end{array}\)

Ta thấy 2 tỉ số bằng nhau vì sau khi rút gọn và trừ đi được kết quả là 0

\( \Rightarrow \) 2 tỉ số chiều dài và chiều rộng màn hình của mỗi loại máy tính là bằng nhau nên sẽ tạo thành một tỉ lệ thức .

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo trang 6)

Hướng dẫn giải

Ta có đẳng thức : x = 2y

\( \Rightarrow \)1 . x = 2y

\( \Rightarrow \)\(\dfrac{2}{x} = \dfrac{1}{y}\) hoặc \(\dfrac{1}{2} = \dfrac{y}{x}\) hoặc \(\dfrac{2}{1} = \dfrac{x}{y}\)\( \Leftrightarrow \)\(2 = \dfrac{x}{y}\) hoặc \(\dfrac{x}{2} = \dfrac{1}{y}\)

Vậy từ đẳng thức : x = 2y ta sẽ viết được 4 tỉ lệ thức .

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 5 (SGK Chân trời sáng tạo trang 7-9)

Hướng dẫn giải

Tổng số vốn của 3 bác Xuân, Yến, Dũng là : 300 + 400 + 500 = 1200 triệu đồng .

Tỉ lệ vốn của bác Xuân là : \(\dfrac{{300}}{{1200}}\)\( = \dfrac{1}{4}\)

TỈ lệ góp vốn của bác Yến là : \(\dfrac{{400}}{{1200}}\)\( = \dfrac{1}{3}\)

Tỉ lệ góp vốn của bác Dũng là  : \(\dfrac{{500}}{{1200}}\) \( = \dfrac{5}{{12}}\)

Từ các tỉ lệ góp vốn trên ta tính được tỉ lệ lãi của mỗi người theo số vốn là :

Bác Xuân có số lãi là : \(\dfrac{1}{4} \times 240\)= 60 ( triệu đồng )

Bác Yến có số lãi là : \(\dfrac{1}{3} \times 240\)= 80 ( triệu đồng )

Bác Dũng có số lãi là : 240 – 80 -  60 = 100 ( triệu đồng )

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)