Bài 1. Tập hợp các số hữu tỉ

Bài 1 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

\(\begin{array}{l} - 7 \notin \mathbb{N};\,\,\,\,\,\,\, - 17 \in \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\, - 38 \in Q\\\frac{4}{5} \notin \mathbb{Z};\,\,\,\,\,\,\,\,\,\,\,\frac{4}{5} \in \mathbb{Q};\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,25 \notin \mathbb{Z};\,\,\,\,\,3,25 \in Q\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (3)

Bài 2 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a) Ta có:

\(\begin{array}{l}\frac{{ - 10}}{{18}} =\frac{{ - 10:2}}{{18:2}} = \frac{{ - 5}}{9};\,\,\,\\\frac{{10}}{{18}} = \frac{{10:2}}{{18:2}} =\frac{5}{9};\,\,\\\,\frac{{15}}{{ - 27}} =\frac{{15:(-3)}}{{ - 27:(-3)}} = \frac{{ - 5}}{9};\,\\ - \frac{{20}}{{36}} =- \frac{{20:4}}{{36:4}}= \frac{{ - 5}}{9}.\end{array}\)

Vậy những phân số nào biểu diễn số hữu tỉ \(\frac{{ - 5}}{9}\) là: \(\frac{{ - 10}}{{18}};\,\frac{{15}}{{ - 27}};\, - \frac{{20}}{{36}}.\)

b) Số đối của các số \(12;\,\frac{{ 4}}{9};\, - 0,375;\,\frac{0}{5};\,-2\frac{2}{5}\) lần lượt là: \( - 12;\,\frac{-4}{9};\,0,375;\,\frac{0}{5};\, 2\frac{2}{5}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Chân trời sáng tạo trang 9)

Hướng dẫn giải

a)      Các điểm A,B,C trong Hình 8 biểu diễn lần lượt các số hữu tỉ: \(\frac{{ - 7}}{4};\,\frac{3}{4};\,\frac{5}{4}.\)

b)      Ta có: \(1\frac{1}{5} = \frac{6}{5};\,\,\, - 0,8 = \frac{{ - 8}}{{10}} = \frac{{ - 4}}{5}.\)

Vậy ta biểu diễn các số hữu tỉ \(\frac{{ - 2}}{5};\,1\frac{1}{5};\,\frac{3}{5};\, - 0,8\) trên trục số như sau:

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

a) Các số hữu tỉ dương là: \(\frac{5}{{12}};\,2\frac{2}{3}.\)

Các số hữu tỉ âm là: \( - \frac{4}{5}; - 2;\, - 0,32.\)

Số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{234}}\).

b) Ta có: \( - \frac{4}{5} = -0,8\)

Vì 0 < 0,32 < 0,8 < 2 nên 0 > -0,32 > -0,8 > -2 hay \(-2 < - \frac{4}{5} < -0,32 < 0\)

Mà \(0 < \frac{5}{12} <1; 1<2\frac{2}{3}\) nên \(0 < \frac{5}{12} < 2\frac{2}{3}\)

Các số theo thứ tự từ nhỏ đến lớn là:

\(-2 ; - \frac{4}{5} ; -0,32; \frac{0}{{234}}; \frac{5}{12} ; 2\frac{2}{3}\)

Chú ý: \(\frac{0}{a} = 0\,,\,a \ne 0.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

a)      Ta có: \(\frac{2}{{ - 5}} = \frac{{ - 16}}{{40}}\) và \(\frac{{ - 3}}{8} = \frac{{ - 15}}{{40}}\)

Do \(\frac{{ - 16}}{{40}} < \frac{{ - 15}}{{40}}\,\, \Rightarrow \,\frac{2}{{ - 5}} < \frac{{ - 3}}{8}\).

b)      Ta có: \( - 0,85 = \frac{{ - 85}}{{100}} = \frac{{ - 17}}{{20}}\). Vậy \( - 0,85\)=\(\frac{{ - 17}}{{20}}\).

c)      Ta có: \(\frac{{37}}{{ - 25}} = \frac{{ - 296}}{{200}}\)  

Do  \(\frac{{ - 137}}{{200}} > \frac{{ - 296}}{{200}}\) nên \(\frac{{ - 137}}{{200}}\) > \(\frac{{37}}{{ - 25}}\) .

d)      Ta có: \( - 1\frac{3}{{10}}=\frac{-13}{10}\) ;

\(-\left( {\frac{{ - 13}}{{ - 10}}} \right) = \frac{{-13}}{{10}}\).

Vậy \(- 1\frac{3}{{10}} =-(\frac{{-13}}{{-10}})\,\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 6 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

a)      Ta có \(\frac{{ - 2}}{3} < 0\) và \(\frac{1}{{200}} > 0\) nên \(\frac{{ - 2}}{3}\)<\(\frac{1}{{200}}\).

b)      Ta có: \(\frac{{139}}{{138}} > 1\) và \(\frac{{1375}}{{1376}} < 1\) nên \(\frac{{139}}{{138}}\) > \(\frac{{1375}}{{1376}}\).

c)      Ta có: \(\frac{{ - 11}}{{33}} = \frac{{ - 1}}{3}\) và \(\frac{{25}}{{ - 76}} = \frac{{ - 25}}{{76}} > \frac{{ - 25}}{{75}} = \frac{{ - 1}}{3}\,\,\,\, \Rightarrow \frac{{25}}{{ - 76}} > \frac{{ - 11}}{33}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Bài 7 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

Ta có: \( - 10,5 <  - 8,6 <  - 8,0 <  - 7,7\).

Vậy ta có thứ tự các độ cao từ thấp đến cao là: Rãnh Philippine, rãnh Puerto Rico, rãnh Peru-Chile, rãnh Romanche.

a)      Những rãnh có độ cao cao hơn rãnh Puerto Rico là: rãnh Peru-Chile, rãnh Romanche vì -7,7 > -8,0 > -8,6

b)      Rãnh đại dương nào có độ cao thấp nhất trong bốn rãnh trên là: rãnh Philippine vì - 10,5 <  - 8,6 <  - 8,0 <  - 7,7

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)