$3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm

Khởi động (SGK Cánh Diều trang 35,36)

Hướng dẫn giải

Kết quả kiểm tra toán của bạn Huy đồng đều hơn

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều trang 35,36)

Hướng dẫn giải

a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là

\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)

b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:

2 5 6 7 8 9 10 11 12 14 16

+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều trang 37,38)

Hướng dẫn giải

a) Ta có: \(8 - 7 = 1;6 - 7 =  - 1;7 - 7 = 0;5 - 7 =  - 2;9 - 7 = 2\)

b) +) Bình phương các độ lệch là: \({(8 - 7)^2} = 1;{(6 - 7)^2} = 1;{(7 - 7)^2} = 0;{(5 - 7)^2} = 4;{(9 - 7)^2} = 4\)

+) Trung bình cộng của bình phương các độ lệch là:

\({s^2} = \frac{{{{(8 - 7)}^2} + {{(6 - 7)}^2} + {{(7 - 7)}^2} + {{(5 - 7)}^2} + {{(9 - 7)}^2}}}{5} = 2\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 1 (SGK Cánh Diều trang 37,38)

Hướng dẫn giải

+) Ta có: \(\overline {{x_5}}  = 57,96,\overline {{x_6}}  = 272,04\)

+) Vậy phương sai của mẫu (5) và (6) là:

\(s_{\left( 5 \right)}^2 = \frac{{{{\left( {55,2 - \overline {{x_5}} } \right)}^2} + {{\left( {58,8 - \overline {{x_5}} } \right)}^2} + {{\left( {62,4 - \overline {{x_5}} } \right)}^2} + {{\left( {54 - \overline {{x_5}} } \right)}^2} + {{\left( {59,4 - \overline {{x_5}} } \right)}^2}}}{5} = 9,16\)

 \(s_{\left( 6 \right)}^2 = \frac{{{{\left( {271,2 - \overline {{x_6}} } \right)}^2} + {{\left( {261 - \overline {{x_6}} } \right)}^2} + {{\left( {276 - \overline {{x_6}} } \right)}^2} + {{\left( {282 - \overline {{x_6}} } \right)}^2} + {{\left( {270 - \overline {{x_6}} } \right)}^2}}}{5} = 48,33\)

Nhận xét: Cự li chạy 500m có kết quả đồng đều hơn.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 39,40)

Hướng dẫn giải

\({s_H} = \sqrt {s_H^2}  = \sqrt {0,4}  \approx 0,63\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 2 (SGK Cánh Diều trang 39,40)

Hướng dẫn giải

+) Ta có bàng tần số:

+) Từ bảng tần số ta có số lượng áo trung bình bán ra trong 1 tháng là: \(\overline x  = 575\) ( chiếc áo)

+) Phương sai của mẫu số liệu là:

\(\begin{array}{l}{s^2} = \frac{{{{\left( {410 - \overline x } \right)}^2} + {{\left( {430 - \overline x } \right)}^2} + {{\left( {450 - \overline x } \right)}^2} + {{\left( {525 - \overline x } \right)}^2} + {{\left( {550 - \overline x } \right)}^2} + {{\left( {560 - \overline x } \right)}^2} + {{\left( {635 - \overline x } \right)}^2} + {{\left( {760 - \overline x } \right)}^2} + {{\left( {800 - \overline x } \right)}^2} + {{\left( {900 - \overline x } \right)}^2}}}{{12}}\\ = 25401\end{array}\)

+) Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {{s^2}}  = 159,4\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 41)

Hướng dẫn giải

a) Kết quả trung bình của 2 bạn là bằng nhau: \(\overline {{x_H}}  = \overline {{x_T}}  = 2,5\) (m)

b) +) Phương sai mẫu số liệu thống kê của bạn Hùng và Trung là:

\(s_H^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2} + {{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,008\)

\(s_T^2 = \frac{{{{\left( {2,4 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,5 - \overline {{x_H}} } \right)}^2} + {{\left( {2,6 - \overline {{x_H}} } \right)}^2}}}{5} = 0,004\)

+) 0,004 < 0,008 nên ta kết luận: Kết quả nhảy xa của bạn Trung ổn định.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 41)

Hướng dẫn giải

a) Dựa vào biểu đồ, ta có mẫu số liệu là:

                                               5,25  5,42  5,98  6,68  6,21  6,81  7,08  7,02

b)

+) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

                                                  5,25  5,42  5,98  6,21  6,68  6,81  7,02  7,08

 +) Khoảng biến thiên của mẫu số liệu đó là: \(R = {x_{\max }} - {x_{\min }} = 7,08 - 5,25 = 1,83\)

c)

+) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

                                       5,25  5,42  5,98  6,21  6,68  6,81 7,02  7,08

+) Các tứ phân vị của mẫu số liệu là: \({Q_1} = 5,7,{Q_2} = 6,445,{Q_3} = 6,915\)

+) Khoảng tứ phân vị của mẫu số liệu là: \({Q_3} - {Q_1} = 1,215\)

d)

+) Tốc độ tăng trưởng GDP  trung bình của Việt Nam giai đoạn 2012 – 2019 là:\(\overline x  = \frac{{5,25{\rm{  +  }}5,42{\rm{  +  }}5,98{\rm{  +  }}6,21{\rm{  +  }}6,68\; + 6,81{\rm{  +  }}7,02{\rm{  +  }}7,08}}{8} = 6,30625\) (%)

 +) Phương sai của mẫu số liệu là: \({s^2} = \frac{{\left[ {{{\left( {5,25 - \overline x } \right)}^2} + {{\left( {5,42 - \overline x } \right)}^2} + ... + {{\left( {7,08 - \overline x } \right)}^2}} \right]}}{8} \approx 0,44\)

+) Độ lệch chuẩn của của mẫu số liệu là: \(s = \sqrt {{s^2}}  \approx 0,66\)(%)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 41)

Hướng dẫn giải

a) Dựa vào biểu đồ, ta có mẫu số liệu là:

5767 5757 5737 5727 5747 5747 5722

b) Khoảng biến thiên của mẫu số liệu đó là: \(R = {x_{\max }} - {x_{\min }} = 5767 - 5722 = 45\)

c) +) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:

5722 5727 5737 5747 5747 5757 5767

+) Các tứ phân vị của mẫu số liệu là:

Trung vị của mẫu số liệu: \({Q_2}\) = 5747.

Trung vị của dãy 5722 5727 5737 là: \({Q_1}\) = 5727.

Trung vị của dãy 5747 5757 5767 là: \({Q_3}\) = 5757.

+) Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} ={Q_3} - {Q_1}\) = 5757- 5727= 30.

d) +) Giá vàng trung bình trong 7 ngày đầu tiên của tháng 6 năm 2021 là: \(\overline x  = \frac{{5722{\rm{  +  }}5727{\rm{  +  }}5737{\rm{  +  }}5747{\rm{  +  }}5747{\rm{   +  }}5757{\rm{  +  }}5767}}{7} = 5743,43\) ( nghìn đồng/ chỉ)

+) Phương sai của mẫu số liệu là: \({s^2} = \frac{{\left[ {{{\left( {5722 - \overline x } \right)}^2} + {{\left( {5727 - \overline x } \right)}^2} + ... + {{\left( {5767 - \overline x } \right)}^2}} \right]}}{7} \approx 219,39\)

+) Độ lệch chuẩn của của mẫu số liệu là: \(s = \sqrt {{s^2}} = \sqrt {219,39}  \approx 14,81\)( nghìn đồng/ chỉ)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)