do đa thức bị chia có bậc 3, đa thức chia có bậc 2 nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là\(x^3:x^2=x\)
Gọi thương là \(x+c\), ta có:
\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\) \(^1\)
=>\(x^3+ax+b=x^3+\left(c+1\right).x^2+\left(c-2\right)x-2c\) \(^2\)
từ 1 và 2, suy ra:
\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)
Vậy với a= -3 ; b=2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\), thương là x-1