\(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\\ =\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\\ =\dfrac{x\sqrt{x}-2x+\sqrt{x}}{x-\sqrt{x}}\\ \)
\(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)