Bài 2: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Viết phương trình tham số của đường thẳng d đi qua điểm A(1; 0; 1) và song song với đường thẳng d': \(\dfrac{x+1}{3}=\dfrac{y-1}{2}=\dfrac{z-1}{4}\).

datcoder
30 tháng 10 2024 lúc 14:04

Một vectơ chỉ phương của \(d'\) là \(\vec a = \left( {3;2;4} \right)\).

Do \(d\parallel d'\) nên đường thẳng \(d\) cũng nhận vectơ \(\vec a = \left( {3;2;4} \right)\) làm một vectơ chỉ phương.

Vậy phương trình tham số của đường thẳng \(d\) đi qua điểm \(A\left( {1;0;1} \right)\) và có một vectơ chỉ phương \(\vec a = \left( {3;2;4} \right)\) là \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 0 + 2t\\z = 1 + 4t\end{array} \right.\)