Bài 21: Đường tròn trong mặt phẳng tọa độ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Viết phương trình đường tròn \(\left( C \right)\) đi qua ba điểm \(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\).

Hà Quang Minh
1 tháng 10 2023 lúc 20:04

Gọi \(d,\Delta \) lần lượt là đường trung trực của hai đoạn thẳng MN, NP. Đường thẳng d đi qua trung điểm I của đoạn MN và vuông góc với MN.

Ta có: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{4 + 2}}{2} = 3\\{y_I} = \frac{{{y_M} + {y_N}}}{2} = \frac{{ - 5 - 1}}{2} =  - 3\end{array} \right. \Rightarrow I\left( {3;3} \right);\overrightarrow {MN}  = \left( { - 2;4} \right) \Rightarrow \overrightarrow {{n_d}}  = \frac{{ - 1}}{2}\overrightarrow {MN}  = \left( {1; - 2} \right)\)

Phương trình tổng quát của \(d\) là: \(1\left( {x - 3} \right) - 2\left( {y + 3} \right) = 0 \Leftrightarrow x - 2y - 9 = 0\).

Tương tự, ta có phương trình đường thẳng \(\Delta \) là: \(x - 7y - 34 = 0\).

Gọi \(J\) là tâm đường tròn đi qua ba điểm M, N, P. Khi đó \(J = d \cap \Delta \), do đó tọa điểm \(J\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 7y - 34 = 0\\x - 2y - 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y =  - 5\end{array} \right. \Rightarrow J\left( { - 1; - 5} \right)\)

Từ đó ta tìm được \(R = JM = 5\)

Vậy phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).

Cách 2:

Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)

\(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\) thuộc (C) nên ta có:

\(\left\{ \begin{array}{l}
16 + 25 + 8a - 10b + c = 0\\
4 + 1 + 4a - 2b + c = 0\\
9 + 64 + 6a - 16b + c = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
8a - 10b + c = - 41\\
4a - 2b + c = - 5\\
6a - 16b + c = - 73
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 5 \,\,\, \rm{(thỏa mãn)}\\
c = 1
\end{array} \right.\)

Vậy phương trình đường tròn đi qua 3 điểm M, N, P là: \({x^2} + {y^2} + 2x + 10y + 1 = 0\) hay \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết