Lời giải:
a.
\(\frac{1}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{5}+\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\frac{\sqrt{5}+\sqrt{3}}{5-3}=\frac{\sqrt{5}+\sqrt{3}}{2}\)
b.
\(=\frac{2[(\sqrt{3}-(\sqrt{2}-1)]}{[(\sqrt{3}+(\sqrt{2}-1)][\sqrt{3}-(\sqrt{2}-1)]}=\frac{2(\sqrt{3}-\sqrt{2}+1)}{3-(\sqrt{2}-1)^2}=\frac{2(\sqrt{3}-\sqrt{2}+1)}{2\sqrt{2}}\)
\(=\frac{\sqrt{3}-\sqrt{2}+1}{\sqrt{2}}=\frac{\sqrt{6}-2+\sqrt{2}}{2}\)
c.
\(=\frac{5(\sqrt[3]{2^2}-3\sqrt[3]{2}+3^2)}{(\sqrt[3]{2})^3+3^3}=\frac{5(\sqrt[3]{4}+3\sqrt[3]{2}+9)}{29}\)