Gọi x và y lần lượt là số chi tiết máy mà tổ một và tổ hai sản xuất được trong tháng thứ nhất (\(x \in \mathbb{N}*;y \in \mathbb{N}*\)).
Trong tháng thứ nhất, hai tổ sản xuất được 800 chi tiết máy, nên ta có phương trình:
x + y = 800 (1)
Trong tháng thứ hai, tổ một sản xuất vượt 15%, tổ hai vượt 20% nên trong tháng này, cả hai tổ đã sản xuất được 945 chi tiết máy, ta có phương trình
(x + 0,15x) + (y + 0,2y) = 945 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 800}\\{1,15x + 1,2y = 945}\end{array}} \right.\)
Giải hệ phương trình ta được: \(\left\{ {\begin{array}{*{20}{c}}{x = 300}\\{y = 500}\end{array}} \right.\)
Vậy trong tháng 1, tổ một sản xuất được 300 chi tiết máy, tổ hai sản xuất được 500 chi tiết máy.