Cho tam giác ABC có ba cạnh BC, AC và AB có độ dài lần lượt là a = 3, b = 4, c = 6
a) Tính côsin của góc lớn nhất của tam giác ABC
b) Tính đường cao ứng với cạnh lớn nhất
Cho tam giác ABC có độ dài cạnh BC=a , AC=b , AB=c và có diện tích S . Nếu tăng cạnh BC lên 3 lần và giảm cạnh AB đi 2 lần , đồng thời giữ nguyên góc B thì khi đó diện tích diện tích tam giác mới được tạo thành bằng
Một tam giác có 3 cạnh 10,13,19 . Diện tích tam giác bằng bao nhiêu ?
cho tam giác ABC có A<5,3> B<-2,-1> C<-1,5 >
a, tính <AB +2BC>*AC , < AB-2BC> *BC
b, tìm tọa độ trọng tâm tam giác ABC
c, tìm tọa độ trực tâm tâm của tam giác ABC
d, tim tọa độ chân đường cao A của tam giác ABC
e, tính diện tích tam giác ABC
cho tam giác ABC có A<5,3> B<-2,-1> C<-1,5 >
a, tính <AB +2BC>*AC , < AB-2BC> *BC
b, tìm tọa độ trọng tâm tam giác ABC
c, tìm tọa độ trực tâm tâm của tam giác ABC
d, tim tọa độ chân đường cao A của tam giác ABC
e, tính diện tích tam giác ABC
Cho tam giác ABC có \(a=12,b=16,c=20\). Tính diện tích S của tam giác, chiều cao \(h_a\), các bán kính R, r của các đường tròn ngoại tiếp, nội tiếp tam giác và đường trung tuyến \(m_a\) của tam giác ?
Cho hình vuông ABCD có cạnh bằng 3a, tâm O; E là điểm trên cạnh BC và BE =a
a) Tính cạnh OE và bán kính đường tròn ngoại tiếp tam giác OBE
b) Gọi G là trọng tâm tam giác ACD. Tính tích vô hướng : \(\overrightarrow{GA}.\overrightarrow{GC}\)
Tam giác ABC có cạnh \(BC=2\sqrt{3}\), cạnh \(AC=2\) và \(\widehat{C}=30^0\)
a) Tính cạnh AB và sin A
b) Tính diện tích S của tam giác ABC
c) Tính chiều cao \(h_a\) và trung tuyến \(m_a\)
Cho tam giác ABC có \(a=12,b=16,c=20\)
a) Tính diện tích S và chiều cao \(h_a\)của tam giác
b) Tính độ dài đường trung tuyến \(m_a\) của tam giác
c) Tính bán kính \(R\) và \(r\) của các đường tròn ngoại tiếp và nội tiếp tam giác