Bài 19. Công thức xác suất toàn phần và công thức Bayes

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong quân sự, một máy bay chiến đấu của đối phương có thể xuất hiện ở vị trí X với xác suất 0,55. Nếu máy bay đó không xuất hiện ở vị trí X thì nó xuất hiện ở vị trí Y. Để phòng thủ, các bệ phóng tên lửa được bố trí tại các vị trí X và Y. Khi máy bay đối phương xuất hiện ở vị trí X hoặc Y thì tên lửa sẽ được phóng để hạ máy bay đó.

Xét phương án tác chiến sau: Nếu máy bay xuất hiện tại X thì bắn 2 quả tên lửa và nếu máy bay xuất hiện tại Y thì bắn 1 quả tên lửa.

Biết rằng, xác suất bắn trúng máy bay của mỗi quả tên lửa là 0,8 và các bệ phóng tên lửa hoạt động độc lập. Máy bay bị bắn hạ nếu nó trúng ít nhất 1 quả tên lửa. Tính xác suất bắn hạ máy bay đối phương trong phương án tác chiến nêu trên.

datcoder
28 tháng 10 lúc 6:41

Xác suất để máy bay của đối phương xuất hiện ở vị trí Y là: \(1 - 0,55 = 0,45\)

Xác suất để không bắn trúng máy bay đối phương của tên lửa là: \(1 - 0,8 = 0,2\)

Gọi A là biến cố: “Máy bay đối phương bị bắn hạ ở vị trí X”

Gọi B là biến cố: “Máy bay đối phương bị bắn hạ ở vị trí Y”

Xác suất để máy bay đối phương bị bắn hạ ở vị trí X là: \(P\left( A \right) = 0,55\left( {1 - 0,2.0,2} \right) = 0,528\)

Xác suất để máy bay đối phương bị bắn hạ ở vị trí Y là: \(P\left( B \right) = 0,45.0,8 = 0,36\)

Vậy xác suất để bắn trúng máy bay đối phương theo phương án tác chiến là:

\(P\left( A \right) + P\left( B \right) = 0,528 + 0,36 = 0,888\)