Gọi d' là đường thẳng qua M và vuông góc d
\(\Rightarrow\) d' nhận (2;1) là 1 vtpt
Phương trình d':
\(2\left(x-1\right)+1\left(y-0\right)=0\Leftrightarrow2x+y-2=0\)
Gọi A là giao điểm của d và d' \(\Rightarrow\) tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}x-2y=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(\dfrac{4}{5};\dfrac{2}{5}\right)\)
Gọi M' là điểm đối xứng M qua d \(\Rightarrow A\) là trung điểm MM'
\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_A-x_M=\dfrac{3}{5}\\y_{M'}=2y_A-y_M=\dfrac{4}{5}\end{matrix}\right.\)
Vậy \(M'\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)