Cho tam giác ABC, độ dài 3 cạnh tam giác lần lượt là a,b,c. Gọi G là trọng tâm và R là bán kính đường tròn ngoại tiếp.
a. \(GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)
b. \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
Trong mặt phẳng 0xy , cho 3 đường thẳng d1 : x+2y+1=0 ; d2 : x+y-5=0 và d3 : 2x+3y-10=0 . Phương trình đường thẳng delta đi qua giao điểm của d1d2 và song song với d3 là
Trong mặt phẳng Oxy cho 3 điểm A(2;4) , B(1;2) , C(6;2) . Tam giác ABC là tam giác gì .
Trong mặt phẳng toạ độ 0xy , cho tam giác ABC cân tại A có A(2;1) , B(-3;6) . Trên cạnh AB lấy điểm D và E sao cho AD=CE . Gọi I (5;-2) là trung điểm của DE , K là giao điểm của AI và BC . Viết phương trình đường thẳng BC
Viết phương trình tổng quát của đường thẳng đi qua điểm I (-1;2) và vuông góc với đường thẳng có phương trình 2x-y+4=0
Cho tam giác ABC có độ dài cạnh BC=a , AC=b , AB=c và có diện tích S . Nếu tăng cạnh BC lên 3 lần và giảm cạnh AB đi 2 lần , đồng thời giữ nguyên góc B thì khi đó diện tích diện tích tam giác mới được tạo thành bằng
Trong mặt phẳng toạ độ Oxy cho tam giác ABC có A(1;1) , B(2;-1) , C(3;3) . Toạ độ điểm E để tứ giác ABCE là hình bình hành là
Cho tam giác ABC có trực tâm \(H\left(0;\frac{23}{3}\right)\) và phương trình đường thẳng AB: 3x-y-1=0, phương trình cạnh AC: 3x+4y-96=0. Viết phương trình cạnh BC
Cho 2 điểm A(-1;2) , B(3;1) và đường thẳng delta \(\left\{{}\begin{matrix}1+t\\2+t\end{matrix}\right.\) . Toạ độ điểm C thuộc delta để tam giác ABC cân tại C là