điểm M di động trên elip (E) có phương trình \(\dfrac{x^2}{49}+\dfrac{y^2}{25}=1\)
điểm M di động trên elip (E) có phương trình \(\dfrac{x^2}{49}+\dfrac{y^2}{25}=1\)
Cho đường tròn \(C_1\left(F_1;2a\right)\) cố định và một điểm \(F_2\) cố định nằm trong \(\left(C_1\right)\).
Xét đường tròn di động (C) có tâm M. Cho biết (C) luôn đi qua điểm \(F_2\) và (C) luôn tiếp xúc với \(\left(C_1\right)\)
Hãy chứng tỏ M di động trên một elip ?
Cho hai đường tròn \(C_1\left(F_1;R_1\right)\) và \(C_2\left(F_2;R_2\right)\). \(C_1\) nằm trong \(C_2\) và \(F_1\ne F_2\). Đường tròn C thay đổi luôn tiếp xúc ngoài với \(C_1\) và tiếp xúc trong với \(C_2\). Hãy chứng tỏ rằng tâm M của đường tròn C di động trên một elip ?
cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)
Cho em hỏi
Trên hệ tọa độ Oxy, elip có một tiêu điểm là
Trong mặt phẳng tọa độ Oxy cho (E): \(\dfrac{x^2}{16}+\dfrac{y^2}{5}=1\) và hai điểm A(-5;1), B(-1;1). Điểm M bất kì thuộc (E), diện tích lớn nhất của tam giác MAB là:
A. 12 B. 9 C.\(\dfrac{9\sqrt{2}}{2}\) D. \(4\sqrt{2}\)
Lập phương trình chính tắc của elip trong các trường hợp sau :
a) Elip đi qua các điểm \(M\left(0;3\right)\) và \(N\left(3;-\dfrac{12}{5}\right)\)
b) Elip có một tiêu điểm \(F_1\left(-\sqrt{3};0\right)\) và điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\) nằm trên elip
Trong mặt phẳng Oxy , viết phương trình chính tắc của Elip có một tiêu điểm là F1(-2;0) và đi qua điểm M(2;3)
Vậy cho em hỏi câu này luôn :))
Trên hệ trục tọa độ , elip có độ dài trục lớn bằng
Các hành tinh và các sao chổi khi chuyển động xung quanh Mặt Trời có quỹ đạo là một đường Elip trong đó tâm Mặt Trời là một tiêu điểm. Điểm gần Mặt Trời nhất gọi là điểm cận nhật, điểm xa mặt trời nhất gọi là điểm viễn nhật. Trái Đất chuyển động xung quanh Mặt Trời Có quỹ đạo là một Elip có độ dài nữa trục lớn bằng 93.000.000 dặm. Tỉ số khoảng cách giữa điểm cận nhật và điểm viễn nhật đến mặt trời là 59/61. Tính khoảng cách từ Trái Đất đến Mặt Trời khi Trái Đất ở điểm cận nhật.