Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật ABCD.A'B'C'D' có A trùng với gốc của hệ tọa độ.
B(a;0;0); D(0;a;0); A'(0;0;b); (a>0;b>0)
Gọi M là trung điểm của CC'
a. Tìm thể tích khối tứ diện BDA'M theo a, b
b. Xác định tỉ số \(\frac{a}{b}\) để 2 mặt phẳng (A'BD) và (MBD) vuông góc với nhau.
Trong không gian với hệ trục tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tại gốc tọa độ. Biết A(2;0;0); B(0;1;0); S(0;0;\(2\sqrt{2}\)).Gọi M là trung điểm cạnh SC
a. Tính góc và khoảng cách giữa 2 đường thẳng SA; BM
b. Giả sử mặt phẳng (ABM) cắt đường thẳng SD tại N. Tính thể tích khối hình chóp S.ABMN
+ Trong không gian với hệ tọa độ Oxyz, cho m, n là hai số thực dương thỏa mãn m + 2n = 1. Gọi A, B, C lần lượt là giao điểm của mặt phẳng (P): mx + ny + mnz – mn = 0 với các trục tọa độ Ox, Oy, Oz. Khi mặt cầu ngoại tiếp tứ diện OABC có bán kính nhỏ nhất thì 2m + n có
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) : x+y+z-1=0 và hai điểm A(1;-3;0),B(5;-1;-2).Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left|MA-MB\right|\) đạt giá trị lớn nhất.
trong mặt phẳng oxy , cho tam giác ABC cân tại A(0,8), M là trung điểm cạnh BC. gọi H là hình chiếu của M lên AC, E(15/4;11/4) là trung điểm MH. tìm tọa độ hai điểm B và C biết đường thẳng BH qua N(8;6) và điểm H nằm trên đường thẳng x+3y-15=0
trong không gian với hệ trục tọa độ oxyz, cho 2 mặt phẳng: (d) : x-z+1=0; (B) : x-4y+z-3=0. lập pt mặt phẳng (p) vuông góc với hai mặt phẳng (d),(B) và tiếp xúc với mặt cầu (S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 4
1.Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diên tích bằng 18.Gọi E là trung điểm của BC.Đường tròn ngoại tiếp tam giác CDE cắt đường chéo AC tại G (G không trùng C).Biết E(1;-1), G(2/5;4/5) và điểm D thuộc đường thẳng d:x+y-6=0. Tìm tọa độ các điểm A,B,C,D.
2.Cho hình chóp s.abc có đáy ABC là tam giác đều cạnh a, tam giác SAB vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt đáy.Tính thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và AC theo a.
3.Giải hệ phương trình
\(\begin{cases}\sqrt{3-x}+\sqrt{y+1}=x^{3^{ }}\\x^{3^{ }}-y^{3^{ }}+12x-3y=3y^{2^{ }}-6x^{2^{^{ }}}-7\end{cases}\)
Trong ko gian với hệ tọa độ Oxyz ,cho 3 điểm A(1,0,0) B (0,1,0) C (0,0,1) gọi H(a, b, c) là trực tâm của tam giác ABC. Tính giá trị của a+b+c