Giải:
Cách 1 : Mặt phẳng trung trực (P) của đoạn thẳng AB chính là đoanh thẳng qua trung điểm I của AB và vuông góc với vectơ
Ta có (2 ; -2; -4) và I(3 ; 2 ; 5) nên phương trình mặ phẳng (P) là:
2(x - 3) - 2(y - 2) - 4(z - 5) = 0 hay x- -2y -2z + 9 = 0.
Cách 2: Mặt phẳng trung trực (P) của đoạn thẳng AB là tập hợp điểm M(x ; y ; z) trong không gian sao cho:
MA = MB ⇔ MA2 = MB2
⇔ (x – 2)2 + (y – 3)2 + (z – 7)2 = (x – 4)2 + (y – 1)2 + (z – 3)2
⇔ - 4x + 4 - 6y + 9 - 14z + 49 = - 8x + 16 - 2y + 1 - 6z +9
⇔ 4x - 4y - 8z + 36 = 0
⇔ x - y - 2z + 9 = 0.