Bài 16. Công thức tính góc trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, tính góc giữa hai mặt phẳng (P): \(x-\sqrt{2}y+z-2=0\) và (Oxz): y = 0.

datcoder
27 tháng 10 lúc 22:12

Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - \sqrt 2 ;1} \right)\), mặt phẳng (Oxz) có vectơ pháp tuyến là \(\overrightarrow n \left( {0;1;0} \right)\). Ta có: \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {0.1 - \sqrt 2 .1 + 1.0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\)

Do đó, \(\left( {\left( P \right),\left( {Oxz} \right)} \right) = {45^0}\).