Bài 1: Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, cho mặt phẳng (α) đi qua ba điểm A(0; 1; 1), B(2; 4; 3), C(5; 3; 1).

a) Tìm tọa độ một cặp vectơ chỉ phương của mặt phẳng (α).

b) Tìm tọa độ một vectơ pháp tuyến của mặt phẳng (α).

c) Lập phương trình của mặt phẳng (α).

datcoder
30 tháng 10 lúc 13:49

a) Mặt phẳng \(\left( \alpha  \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2;3;2} \right)\) và \(\overrightarrow {AC}  = \left( {5;2;0} \right)\).

b) Do \(\left( \alpha  \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2;3;2} \right)\) và \(\overrightarrow {AC}  = \left( {5;2;0} \right)\), nên một vectơ pháp tuyến của \(\left( \alpha  \right)\) là:

\(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3.0 - 2.2;2.5 - 2.0;2.2 - 3.5} \right) = \left( { - 4;10; - 11} \right)\).

c) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(A\left( {0;1;1} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( { - 4;10; - 11} \right)\) nên phương trình mặt phẳng \(\left( \alpha  \right)\) là:

\( - 4\left( {x - 0} \right) + 10\left( {y - 1} \right) - 11\left( {z - 1} \right) = 0 \Leftrightarrow  - 4x + 10y - 11z + 1 = 0\).