Bài 2: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:

a) hai đường thẳng AC và BA'

b) hai mặt phẳng (BB'D'D) và (AA'C'C);

c) đường thẳng AC' và mặt phẳng (A'BD).

datcoder
30 tháng 10 lúc 14:03

a) Ta có \(A\left( {0;0;0} \right)\), \(B\left( {1;0;0} \right)\), \(D\left( {0;5;0} \right)\), \(A'\left( {0;0;3} \right)\), suy ra \(C\left( {1;5;0} \right).\)

Suy ra \(\overrightarrow {AC}  = \left( {1;5;0} \right)\) và \(\overrightarrow {BA'}  = \left( { - 1;0;3} \right).\)

Ta có \(\cos \left( {AC,BA'} \right) = \left| {\cos \left( {\overrightarrow {AC} ,\overrightarrow {BA'} } \right)} \right| = \frac{{\left| {1.\left( { - 1} \right) + 5.0 + 0.3} \right|}}{{\sqrt {{1^2} + {5^2} + {0^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {0^2} + {3^2}} }} = \frac{{\sqrt {65} }}{{130}}\).

Vậy \(\left( {AC,BA'} \right) \approx {86^o}27'.\)

b) Ta có \(BB' \bot AC\) và \[DB \bot AC\] nên \(\overrightarrow {AC}  = \left( {1;5;0} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {BB'D'D} \right).\)

Ta có \(CC' \bot BD\) và \[AC \bot BD\] nên \(\overrightarrow {BD}  = \left( { - 1;5;0} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {AA'C'C} \right).\)

Như vậy,

\(\cos \left( {\left( {BB'D'D} \right),\left( {AA'C'C} \right)} \right) = \left| {\cos \left( {\overrightarrow {BD} ,\overrightarrow {AC} } \right)} \right| = \frac{{\left| {1.\left( { - 1} \right) + 5.5 + 0.0} \right|}}{{\sqrt {{1^2} + {5^2} + {0^2}} \sqrt {{{\left( { - 1} \right)}^2} + {5^2} + {0^2}} }} = \frac{{12}}{{13}}.\)

Suy ra \(\left( {\left( {BB'D'D} \right),\left( {AA'C'C} \right)} \right) \approx {22^o}37'\).

c) Ta có \(C'\left( {1;5;3} \right) \Rightarrow \overrightarrow {AC'}  = \left( {1;5;3} \right).\)

Ta có \(B\left( {1;0;0} \right)\), \(D\left( {0;5;0} \right)\), \(A'\left( {0;0;3} \right)\). Suy ra mặt phẳng \(\left( {A'BD} \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {A'B} \left( {1;0; - 3} \right)\) và \(\overrightarrow {A'D} \left( {0;5; - 3} \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {A'BD} \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {15;3;5} \right).\)

Ta có \(\sin \left( {AC',\left( {A'BD} \right)} \right) = \left| {\cos \left( {\overrightarrow {AC'} ,\vec n} \right)} \right| = \frac{{\left| {1.15 + 5.3 + 3.5} \right|}}{{\sqrt {{1^2} + {5^2} + {3^2}} .\sqrt {{{15}^2} + {3^2} + {5^2}} }} = \frac{{9\sqrt {185} }}{{259}}.\)

Suy ra \(\left( {AC',\left( {A'BD} \right)} \right) \approx {28^o}12'.\)