Bài 2: Toạ độ của vectơ trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm hai đường chéo AC và BD trùng với gốc O. Các vectơ \(\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{OS}\) = 4 (Hình 15). Tìm tọa độ các vectơ \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AS}\) và \(\overrightarrow{AM}\) với M là trung điểm của cạnh SC.

Nguyễn Quốc Đạt
28 tháng 10 2024 lúc 23:55

Xét tam giác OAB vuông tại O: \(OB = \sqrt {A{B^2} - O{A^2}}  = \sqrt {{5^2} - {4^2}}  = 3\)

Ta có: \(\overrightarrow {OA}  =  - 4\overrightarrow j  =  > A(0; - 4;0)\)

\(\overrightarrow {OB}  = 3\overrightarrow i  =  > B(3;0;0)\)

=> \(\overrightarrow {AB}  = 3\overrightarrow i  - 4\overrightarrow j  = (3; - 4;0)\)

\(\overrightarrow {OC}  = 4\overrightarrow j  =  > C(0;4;0)\) => \(\overrightarrow {AC}  = 8\overrightarrow j  = (0;8;0)\)

\(\overrightarrow {OS}  = 4\overrightarrow k  =  > S(0;0;4)\) => \(\overrightarrow {AS}  = 4\overrightarrow j  + 4\overrightarrow k  = (0;4;4)\)

\(\overrightarrow {OM}  = \frac{1}{2}(\overrightarrow {OS}  + \overrightarrow {OC} ) = \frac{1}{2}(4\overrightarrow k  + 4\overrightarrow j ) = 2\overrightarrow j  + 2\overrightarrow k  =  > \overrightarrow {OM}  = (0;2;2) \Rightarrow M(0;2;2)\)

=> \(\overrightarrow {AM}  = 6\overrightarrow j  + 2\overrightarrow k  = (0;6;2)\)