Bài 15. Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Trong không gian Oxyz, cho đường thẳng \(\Delta:\left\{{}\begin{matrix}x=2+t\\y=3t\\z=1+t\end{matrix}\right.\).

a) Hãy chỉ ra hai điểm thuộc ∆ và một vectơ chỉ phương của ∆.

b) Viết phương trình tham số của đường thẳng đi qua gốc tọa độ O(0; 0; 0) và có vectơ chỉ phương \(\overrightarrow{v}=\left(1;3;1\right)\).

Nguyễn Quốc Đạt
27 tháng 10 2024 lúc 21:47

a) Vì \(\Delta \) có phương trình \(\left\{ \begin{array}{l}x = 2 + t\\y = 3t\\z = 1 + t\end{array} \right.\) nên điểm \(M\left( {2;0;1} \right)\) và điểm \(N\left( {3;3;2} \right)\) thuộc \(\Delta \) và \(\overrightarrow u \left( {1;3;1} \right)\) là một vectơ chỉ phương của \(\Delta \).

b) Phương trình tham số của đường thẳng đi qua gốc tọa độ \(O\left( {0;0;0} \right)\) và có vectơ chỉ phương \(\overrightarrow v  = \left( {1;3;1} \right)\) là: \(\left\{ \begin{array}{l}x = t\\y = 3t\\z = t\end{array} \right.\)