Bài 3: Ứng dụng hình học của tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian, cho hình chóp O.ABCD có đáy là hình vuông cạnh a, OA \(\perp\) (ABCD), OA = h. Đặt trục số Ox như Hình 8. Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 < x ≤ h), cắt hình chóp O.ABCD theo mặt cắt là hình vuông A'B'C'D'. Kí hiệu S(x) là diện tích của hình vuông A'B'C'D'.

a) Tính S(x) theo a, h và x.

b) Tính \(\int\limits^h_0S\left(x\right)dx\) và so sánh với thể tích của khối chóp O.ABCD.

datcoder
29 tháng 10 lúc 23:06

a) Do \(A'B'C'D'\) là hình vuông, nên \(S\left( x \right) = A'D{'^2}\)

Tam giác \(OAD\) có \(AD\parallel A'D'\) nên \(\frac{{OA'}}{{OA}} = \frac{{A'D'}}{{AD}} \Rightarrow A'D' = \frac{{OA'.AD}}{{OA}} = \frac{{x.a}}{h}\)

Suy ra \(S\left( x \right) = A'D{'^2} = {\left( {\frac{{x.a}}{h}} \right)^2} = \frac{{{a^2}}}{{{h^2}}}{x^2}\)

b) Ta có: \(\int\limits_0^h {S\left( x \right)dx}  = \frac{{{a^2}}}{{{h^2}}}\int\limits_0^h {{x^2}dx}  = \frac{{{a^2}}}{{{h^2}}}\left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^h = \frac{{{a^2}}}{{{h^2}}}.\frac{{{h^3}}}{3} = \frac{{{a^2}h}}{3}\)

Thể tích khối chóp \(O.ABCD\) là \({V_{O.ABCD}} = \frac{1}{3}.{a^2}.h = \frac{{{a^2}h}}{3}\)

Như vậy \({V_{O.ABCD}} = \int\limits_0^h {S\left( x \right)dx} \)