Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân
Nhờ mọi người vẽ hình giúp em vs ạ! Ko cần giải đâu
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Cho tam giác ABC. Hai đường phân giác của các cặp góc ngoài đỉnh B và C, đỉnh C và A, đỉnh A và B lần lượt cắt nhau tại A', B', C'. Chứng minh rằng AA', BB', CC' là các đường cao của tam giác A'B'C'. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C' ?
Cho tam giác ABC có AB=AC=5cm BC=6cm đường cao AH xuất phát từ đỉnh A của tam giác ABC (H thuộc BC) a)chứng minh tam giác AHB =AHC b)chứng minh AH là tia phân giác của góc A c)tính độ dài các đoạn thẳng BH và AH
Cho tam giác ABC cân tại đỉnh A. Hai đường cao xuất phát từ đỉnh B và đỉnh C cắt nhau tại M. Hãy tìm các góc của tam giác ABC, biết \(\widehat{BMC}=140^0\) ?
Bài 18. Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) H là giao điểm ba đường trung trực của tam giác ABC.
b) CH vuông góc với AB.
c) AH vuông góc với BC.
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
Cho tam giác ABC có hai đường cao AD và BE cắt nhau tại M. Tính số đo góc AMB biết góc A=55o góc B=67o
Cho tam giác ABC không vuông. Gọi H là trực tâm của nó
a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó
b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC